Question 11.50: The bearings at A and B exert only x and z components of for...

The bearings at A and B exert only x and z components of force on the steel shaft. Determine the shaft’s diameter to the nearest millimeter so that it can resist the loadings of the gears. Use the maximumdistortion-energy theory of failure with \sigma_{\text {allow }}=200 \mathrm{MPa}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Maximum resultant moment

M=\sqrt{1250^{2}+250^{2}}=1274.75 \mathrm{~N} \cdot \mathrm{m} \\\sigma_{1,2}=\frac{\sigma_{x}}{2} \pm \sqrt{\frac{\sigma_{x}^{2}}{4}+\tau_{x y}^{2}}

Let a=\frac{\sigma_{x}}{2}, b=\sqrt{\frac{\sigma_{x}^{2}}{4}+\tau_{x y}^{2}}\\\sigma_{1}=a+b, \quad \sigma_{2}=a-b

Require,
\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}=\sigma_{\text {allow }}^{2}\\a^{2}+2 a b+b^{2}-\left[a^{2}-b^{2}\right]+a^{2}-2 a b+b^{2}=\sigma_{\text {allow }}^{2}\\a^{2}+3 b^{2}=\sigma_{\text {allow }}^{2}\\\frac{\sigma_{x}^{2}}{4}+3\left(\frac{\sigma_{x}^{2}}{4}+\tau_{x y}^{2}\right)=\sigma_{\text {allow }}^{2}\\\sigma_{x}^{2}+3 \tau_{x y}^{2}=\sigma_{\text {allowu }}^{2}

\left(\frac{M c}{\frac{\pi}{4} c^{4}}\right)^{2}+3\left(\frac{T c}{\frac{\pi}{2} c^{4}}\right)^{2}=\sigma_{\text {allow }}^{2}

 

\frac{1}{c^{6}}\left[\left(\frac{4 M}{\pi}\right)^{2}+3\left(\frac{2 T}{\pi}\right)^{2}\right]=\sigma_{\text {allow }}^{2}\\c^{6}=\frac{16}{\sigma_{\text {allow }}^{2} \pi^{2}} M^{2}+\frac{12 T^{2}}{\sigma_{\text {allow }}^{2} \pi^{2}}\\c=\left[\frac{4}{\sigma_{\text {altow }}^{2} \pi^{2}}\left(4 M^{2}+3 T^{2}\right)\right]^{\frac{1}{6}}\\=\left[\frac{4}{\left(200\left(10^{\circ}\right)\right)^{2}(\pi)^{2}}\left(4(1274.75)^{2}+3(375)^{2}\right)\right]^{\frac{1}{6}}

= 0.0203 m = 20.3 mm

d = 40.6 mm

Use

d = 41 mm

2

Related Answered Questions