The built-up beam is fabricated from the three thin plates having a thickness t. Determine the location of the shear center O.
The built-up beam is fabricated from the three thin plates having a thickness t. Determine the location of the shear center O.
Shear Center. Referring to Fig. a and summing moments about point A, we have
\curvearrowleft +\Sigma\left(M_{R}\right)_{A}=\Sigma M_{A} ; \quad P e=F_{f}(a) \text{(1)}
Section Properties: The moment of inertia of the cross section about the axis of symmetry is
I=\frac{1}{12}(t)(2 a)^{3}+2\left[\text { at }\left(\frac{a}{2}\right)^{2}\right]=\frac{7}{6} a^{3} t
Referring to Fig. c, \bar{y}^{\prime}=\frac{a}{2^{.}} Thus, Q as a function of s is
Q=\bar{y}^{\prime} A^{\prime}=\frac{a}{2}(s t)=\frac{a t}{2} s
Shear Flow:
q=\frac{V Q}{I}=\frac{P\left(\frac{a t}{2} s\right)}{\frac{7}{6} a^{3} t}=\frac{3 P}{7 a^{2}} s
Resultant Shear Force: The shear force resisted by the flange is
F_{f}=\int_{0}^{a} q d s=\int_{0}^{a} \frac{3 P}{7 a^{2}} s d s=\left.\frac{3 P}{7 a^{2}}\left(\frac{s^{2}}{2}\right)\right|_{0} ^{a}=\frac{3}{14} P
Substituting this result into Eq. (1),
e=\frac{3}{14} a