Question 7.60: The built-up beam is formed by welding together the thin pla...

The built-up beam is formed by welding together the thin plates of thickness 5 mm. Determine the location of the shear center O.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Shear Center. Referring to Fig.a and summing moments about point A, we have

 

\curvearrowleft +\sum{\left(M_{ R}\right)_{A}}=\sum{ M_{A}} ; \quad-P e=-\left(F_{w}\right)_{1}(0.3)

 

e=\frac{0.3\left(F_{w}\right)_{1}}{P}           \text{(1)}

 

Section Properties: The moment of inertia of the cross section about the axis of symmetry is

 

I=\frac{1}{12}(0.005)\left(0.4^{3}\right)+\frac{1}{12}(0.005)\left(0.2^{3}\right)=30\left(10^{-6}\right)  \mathrm{m}^{4}

 

Referring to Fig. b, \bar{y}^{\prime}=(0.1-s)+\frac{s}{2}=(0.1-0.5 s)  \mathrm{m} . Thus, Q as a function of s is

 

Q=\bar{y}^{\prime} A^{\prime}=(0.1-0.5 s)(0.005 s)=\left[0.5\left(10^{-3}\right) s-2.5\left(10^{-3}\right) s^{2}\right]  \mathrm{m}^{3}

 

Shear Flow:

 

q=\frac{V Q}{I}=\frac{P\left[0.5\left(10^{-3}\right) s-2.5\left(10^{-3}\right) s^{2}\right]}{30\left(10^{-6}\right)}=P\left(16.6667 s-83.3333 s^{2}\right)

Resultant Shear Force: The shear force resisted by the shorter web is

 

\left(F_{w}\right)_{1}=2 \int_{0}^{0.1  \mathrm{m}} q d s=2 \int_{0}^{0.1  \mathrm{m}} P\left(16.6667 s-83.3333 s^{2}\right) d s=0.1111 P

 

Substituting this result into Eq. (1),

 

e=0.03333  \mathrm{m}=33.3  \mathrm{m}
2

Related Answered Questions