The built-up beam is formed by welding together the thin plates of thickness 5 mm. Determine the location of the shear center O.
The built-up beam is formed by welding together the thin plates of thickness 5 mm. Determine the location of the shear center O.
Shear Center. Referring to Fig.a and summing moments about point A, we have
\curvearrowleft +\sum{\left(M_{ R}\right)_{A}}=\sum{ M_{A}} ; \quad-P e=-\left(F_{w}\right)_{1}(0.3)
e=\frac{0.3\left(F_{w}\right)_{1}}{P} \text{(1)}
Section Properties: The moment of inertia of the cross section about the axis of symmetry is
I=\frac{1}{12}(0.005)\left(0.4^{3}\right)+\frac{1}{12}(0.005)\left(0.2^{3}\right)=30\left(10^{-6}\right) \mathrm{m}^{4}
Referring to Fig. b, \bar{y}^{\prime}=(0.1-s)+\frac{s}{2}=(0.1-0.5 s) \mathrm{m} . Thus, Q as a function of s is
Q=\bar{y}^{\prime} A^{\prime}=(0.1-0.5 s)(0.005 s)=\left[0.5\left(10^{-3}\right) s-2.5\left(10^{-3}\right) s^{2}\right] \mathrm{m}^{3}
Shear Flow:
q=\frac{V Q}{I}=\frac{P\left[0.5\left(10^{-3}\right) s-2.5\left(10^{-3}\right) s^{2}\right]}{30\left(10^{-6}\right)}=P\left(16.6667 s-83.3333 s^{2}\right)
Resultant Shear Force: The shear force resisted by the shorter web is
\left(F_{w}\right)_{1}=2 \int_{0}^{0.1 \mathrm{m}} q d s=2 \int_{0}^{0.1 \mathrm{m}} P\left(16.6667 s-83.3333 s^{2}\right) d s=0.1111 P
Substituting this result into Eq. (1),
e=0.03333 \mathrm{m}=33.3 \mathrm{m}