Question 11.35: The case of an infinite square well whose right wall expands...

The case of an infinite square well whose right wall expands at a constant velocity (v) can be solved exactly. A complete set of solutions is

\Phi_{n}(x, t) \equiv \sqrt{\frac{2}{w}} \sin \left(\frac{n \pi}{w} x\right) e^{i\left(m v x^{2}-2 E_{n}^{i} a t\right) / 2 \hbar w} ,                  (11.136)

where w(t) \equiv a+v t \text { is the width of the well and } E_{n}^{i} \equiv n^{2} \pi^{2} \hbar^{2} / 2 m a^{2} is the nth allowed energy of the original well (width a). The general solution is a linear combination of the Φ’s:

\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \Phi_{n}(x, t)                   (11.137).

whose coefficients c_n are independent of t.

(a) Check that Equation 11.136 satisfies the time-dependent Schrödinger equation, with the appropriate boundary conditions.

(b) Suppose a particle starts out (t = 0) in the ground state of the initial well:

\Psi(x, 0)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi}{a} x\right) ,

Show that the expansion coefficients can be written in the form

c_{n}=\frac{2}{\pi} \int_{0}^{\pi} e^{-i \alpha z^{2}} \sin (n z) \sin (z) d z ,        (11.138).

where \alpha \equiv m v a / 2 \pi^{2} \hbar is a dimensionless measure of the speed with which the well expands. (Unfortunately, this integral cannot be evaluated in terms of elementary functions.)

(c) Suppose we allow the well to expand to twice its original width, so the “external” time is given by w\left(T_{e}\right)=2 a . The “internal” time is the period of the time-dependent exponential factor in the (initial) ground state.
Determine T_{e} \text { and } T_{i} , and show that the adiabatic regime corresponds to \alpha \ll 1, \text { so that } \exp \left(-i \alpha z^{2}\right) \approx 1 over the domain of integration. Use this to determine the expansion coefficients, c_{n} . \text { Construct } \Psi(x, t) , and confirm that it is consistent with the adiabatic theorem.

(d) Show that the phase factor in Ψ (x,t) can be written in the form

\theta(t)=-\frac{1}{\hbar} \int_{0}^{t} E_{1}\left(t^{\prime}\right) d t^{\prime},       (11.139).

where E_{n}(t) \equiv n^{2} \pi^{2} \hbar^{2} / 2 m w^{2} is the nth instantaneous eigenvalue, at time t. Comment on this result. What is the geometric phase? If the well now contracts back to its original size, what is Berry’s phase for the cycle?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\text { Let } \quad\left(m v x^{2}-2 E_{n}^{i} a t\right) / 2 \hbar w=\phi(x, t) . \quad \Phi_{n}=\sqrt{\frac{2}{w}} \sin \left(\frac{n \pi}{w} x\right) e^{i \phi} ,  so

\frac{\partial \Phi_{n}}{\partial t}=\sqrt{2}\left(-\frac{1}{2} \frac{1}{w^{3 / 2}} v\right) \sin \left(\frac{n \pi}{w} x\right) e^{i \phi}+\sqrt{\frac{2}{w}}\left[-\frac{n \pi x}{w^{2}} v \cos \left(\frac{n \pi}{w} x\right)\right] e^{i \phi}+\sqrt{\frac{2}{w}} \sin \left(\frac{n \pi}{w} x\right)\left(i \frac{\partial \phi}{\partial t}\right) e^{i \phi} .

=\left[-\frac{v}{2 w}-\frac{n \pi x v}{w^{2}} \cot \left(\frac{n \pi}{w} x\right)+i \frac{\partial \phi}{\partial t}\right] \Phi_{n} . \quad \frac{\partial \phi}{\partial t}=\frac{1}{2 \hbar}\left[-\frac{2 E_{n}^{i} a}{w}-\frac{v}{w^{2}}\left(m v x^{2}-2 E_{n}^{i} a t\right)\right]=-\frac{E_{n}^{i} a}{\hbar w}-\frac{v}{w} \phi .

i \hbar \frac{\partial \Phi_{n}}{\partial t}=-i \hbar\left[\frac{v}{2 w}+\frac{n \pi x v}{w^{2}} \cot \left(\frac{n \pi}{w} x\right)+i \frac{E_{n}^{i} a}{\hbar w}+i \frac{v}{w} \phi\right] \Phi_{n} .

H \Phi_{n}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Phi_{n}}{\partial x^{2}} . \quad \frac{\partial \Phi_{n}}{\partial x}=\sqrt{\frac{2}{w}}\left[\frac{n \pi}{w} \cos \left(\frac{n \pi}{w} x\right)\right] e^{i \phi}+\sqrt{\frac{2}{w}} \sin \left(\frac{n \pi}{w} x\right) e^{i \phi}\left(i \frac{\partial \phi}{\partial x}\right) .

\frac{\partial \phi}{\partial x}=\frac{m v x}{\hbar w} . \quad \frac{\partial \Phi_{n}}{\partial x}=\left[\frac{n \pi}{w} \cot \left(\frac{n \pi}{w} x\right)+i \frac{m v x}{\hbar w}\right] \Phi_{n} .

\frac{\partial^{2} \Phi_{n}}{\partial x^{2}}=\left[-\left(\frac{n \pi}{w}\right)^{2} \csc ^{2}\left(\frac{n \pi}{w} x\right)+\frac{i m v}{\hbar w}\right] \Phi_{n}+\left[\frac{n \pi}{w} \cot \left(\frac{n \pi}{w} x\right)+i \frac{m v x}{\hbar w}\right]^{2} \Phi_{n} .

So the Schrödinger equation \left(i \hbar \partial \Phi_{n} / \partial t=H \Phi_{n}\right) is satisfied  ⇔

-i \hbar\left[\frac{v}{2 w}+\frac{n \pi x v}{w^{2}} \cot \left(\frac{n \pi}{w} x\right)+i \frac{E_{n}^{i} a}{\hbar w}+i \frac{v}{w} \phi\right] .

=-\frac{\hbar^{2}}{2 m}\left\{-\left(\frac{n \pi}{w}\right)^{2} \csc ^{2}\left(\frac{n \pi}{w} x\right)+\frac{i m v}{\hbar w}+\left[\frac{n \pi}{w} \cot \left(\frac{n \pi}{w} x\right)+i \frac{m v x}{\hbar w}\right]^{2}\right\}.

Cotangent terms: -i \hbar\left(\frac{n \pi x v}{w^{2}}\right) \stackrel{?}{=}-\frac{\hbar^{2}}{2 m}\left(2 \frac{n \pi}{w} i \frac{m v x}{\hbar w}\right)=-i \hbar \frac{n \pi v x}{w^{2}} .

Remaining trig terms on right:

-\left(\frac{n \pi}{w}\right)^{2} \csc ^{2}\left(\frac{n \pi}{w} x\right)+\left(\frac{n \pi}{w}\right)^{2} \cot ^{2}\left(\frac{n \pi}{w} x\right)=-\left(\frac{n \pi}{w}\right)^{2}\left[\frac{1-\cos ^{2}(n \pi x / w)}{\sin ^{2}(n \pi x / w)}\right]=-\left(\frac{n \pi}{w}\right)^{2} .

This leaves:

i\left[\frac{v}{2 w}+i \frac{E_{n}^{i} a}{\hbar w}+i \frac{v}{w}\left(\frac{m v x^{2}-2 E_{n}^{i} a t}{2 \hbar w}\right)\right] \stackrel{?}{=} \frac{\hbar}{2 m}\left[-\left(\frac{n \pi}{w}\right)^{2}+\frac{i m v}{\hbar w}-\frac{m^{2} v^{2} x^{2}}{\hbar^{2} w^{2}}\right] .

\cancel {\frac{i v}{ 2}}-\frac{E_{n}^{i} a}{\hbar}-\cancel {\frac{m v^{2} x^{2}}{2 \hbar w}}+\frac{v E_{n}^{i} a t}{\hbar w} \stackrel{?}{=}-\frac{\hbar n^{2} \pi^{2}}{2 m w}+\cancel {\frac{i v}{ 2}}-\cancel {\frac{m v^{2} x^{2}}{2 \hbar w}}.

-\frac{E_{n}^{i} a}{\hbar w}(w-v t)=-\frac{E_{n}^{i} a^{2}}{\hbar w} \stackrel{?}{=}-\frac{\hbar n^{2} \pi^{2}}{2 m w} \Leftrightarrow-\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \frac{a^{2}}{\hbar w}=-\frac{\hbar n^{2} \pi^{2}}{2 m w}=\text { r.h.s. } .

So \Phi_{n} does satisfy the Schrödinger equation, and since \Phi_{n}(x, t)=(\cdots) \sin (n \pi x / w) , it fits the boundary conditions: \Phi_{n}(0, t)=\Phi_{n}(w, t)=0 .

(b)

Equation 11.137 \Longrightarrow \Psi(x, 0)=\sum c_{n} \Phi_{n}(x, 0)=\sum c_{n} \sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) e^{i m v x^{2} / 2 \hbar a} .

Multiply by \sqrt{\frac{2}{a}} \sin \left(\frac{n^{\prime} \pi}{a} x\right) e^{-i m v x^{2} / 2 \hbar a}   and integrate:

\sqrt{\frac{2}{a}} \int_{0}^{a} \Psi(x, 0) \sin \left(\frac{n^{\prime} \pi}{a} x\right) e^{-i m v x^{2} / 2 \hbar a} d x=\sum c_{n}[\underbrace{\frac{2}{a} \int_{0}^{a} \sin \left(\frac{n \pi}{a} x\right) \sin \left(\frac{n^{\prime} \pi}{a} x\right) d x}_{\delta_{n n^{\prime}}}]=c_{n^{\prime}} .

So, in general: c_{n}=\sqrt{\frac{2}{a}} \int_{0}^{a} e^{-i m v x^{2} / 2 \hbar a} \sin \left(\frac{n \pi}{a} x\right) \Psi(x, 0) d x .  In this particular case,

c_{n}=\frac{2}{a} \int_{0}^{a} e^{-i m v x^{2} / 2 \hbar a} \sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{\pi}{a} x\right) d x . \quad \text { Let } \quad \frac{\pi}{a} x \equiv z ; \quad d x=\frac{a}{\pi} d z ; \quad \frac{m v x^{2}}{2 \hbar a}=\frac{m v z^{2}}{2 \hbar a} \frac{a^{2}}{\pi^{2}}=\frac{m v a}{2 \pi^{2} \hbar} z^{2} .

c_{n}=\frac{2}{\pi} \int_{0}^{\pi} e^{-i \alpha z^{2}} \sin (n z) \sin (z) d z<br /> .  QED

(c)

w\left(T_{e}\right)=2 a \Rightarrow a+v T_{e}=2 a \Rightarrow v T_{e}=a \Rightarrow T_{e}=a / v ; \quad e^{-i E_{1} t / \hbar} \Rightarrow \omega=\frac{E_{1}}{\hbar} \Rightarrow T_{i}=\frac{2 \pi}{\omega}=2 \pi \frac{\hbar}{E_{1}}, \text { or } ,

T_{i}=\frac{2 \pi \hbar}{\pi^{2} \hbar^{2}} 2 m a^{2}=\frac{4}{\pi} \frac{m a^{2}}{\hbar} T_{i}=\frac{4 m a^{2}}{\pi \hbar} .  Adiabatic  \Rightarrow T_{e} \gg T_{i} \Rightarrow \frac{a}{v} \gg \frac{4 m a^{2}}{\pi \hbar} \Rightarrow \frac{4}{\pi} \frac{m a v}{\hbar} \ll 1, \text { or } ,

8 \pi\left(\frac{m a v}{2 \pi^{2} \hbar}\right)=8 \pi \alpha \ll 1, \quad \text { so } \quad \alpha \ll 1 . \text { Then } c_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n z) \sin (z) d z=\delta_{n 1} .  Therefore

\Psi(x, t)=\sqrt{\frac{2}{w}} \sin \left(\frac{\pi x}{w}\right) e^{i\left(m v x^{2}-2 E_{1}^{i} a t\right) / 2 \hbar w} .

which (apart from a phase factor) is the ground state of the instantaneous well, of width w, as required by the adiabatic theorem. (Actually, the first term in the exponent, which is at most \frac{m v(2 a)^{2}}{2 \hbar(2 a)}=\frac{m v a}{\hbar} \ll 1   and could be dropped, in the adiabatic regime.)

(d)

\theta(t)=-\frac{1}{\hbar}\left(\frac{\pi^{2} \hbar^{2}}{2 m}\right) \int_{0}^{t} \frac{1}{\left(a+v t^{\prime}\right)^{2}} d t^{\prime}=-\left.\frac{\pi^{2} \hbar}{2 m}\left[-\frac{1}{v}\left(\frac{1}{a+v t^{\prime}}\right)\right]\right|_{0} ^{t}

=-\frac{\pi^{2} \hbar}{2 m v}\left(\frac{1}{a}-\frac{1}{w}\right)=-\frac{\pi^{2} \hbar}{2 m v}\left(\frac{v t}{a w}\right)=-\frac{\pi^{2} \hbar t}{2 m a w} .

So (dropping the \frac{m v x^{2}}{2 \hbar w} term, as explained in (c)) \Psi(x, t)=\sqrt{\frac{2}{w}} \sin \left(\frac{\pi x}{w}\right) e^{-i E_{1}^{i} a t / \hbar w} can be written (since -\frac{E_{1}^{i} a t}{\hbar w}=-\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{a t}{\hbar w}=-\frac{\pi^{2} \hbar t}{2 m a w}=\theta ) : \Psi(x, t)=\sqrt{\frac{2}{w}} \sin \left(\frac{\pi x}{w}\right) e^{i \theta} .

This is exactly what one would naively expect: For a fixed well (of width a) we’d have \Psi(x, t)= \Psi_{1}(x) e^{-i E_{1} t / \hbar} ; for the (adiabatically) expanding well, simply replace a by the (time-dependent) width w, and integrate to get the accumulated phase factor, noting that E_1 is now a function of t.

Related Answered Questions