The channel is subjected to a shear of V = 75 kN . Determine the maximum shear flow in the channel.
The channel is subjected to a shear of V = 75 kN . Determine the maximum shear flow in the channel.
I=\frac{1}{12}(0.4)\left(0.03^{3}\right)+0.4(0.03)(0.0725-0.015)^{2}
\quad+2\left[\frac{1}{12}(0.03)\left(0.2^{3}\right)+0.03(0.2)(0.13-0.0725)^{2}\right]
=0.12025\left(10^{-3}\right) \mathrm{m}^{4}
Q_{\max }=\bar{y}^{\prime} A^{\prime}=0.07875(0.1575)(0.03)=0.37209\left(10^{-3}\right) \mathrm{m}^{3}
q_{\max }=\frac{75\left(10^{3}\right)(0.37209)\left(10^{-3}\right)}{0.12025\left(10^{-3}\right)}=232 \mathrm{kN/m}