Question 8.82: The circuit in Fig. 8.123 is the electrical analog of body f...

The circuit in Fig. 8.123 is the electrical analog of body functions used in medical schools to study convulsions. The analog is as follows:

C_{1}= Volume of fluid in a drug

C_{2}= Volume of blood stream in a specified region

R_{1}= Resistance in the passage of the drug from the input to the blood stream

R_{2}= Resistance of the excretion mechanism, such as kidney, etc.

v_{0} = Initial concentration of the drug dosage

v(t) = Percentage of the drug in the blood stream

Find v(t) for t > 0 given that C_{1} =0.5 \mu F, C_{2} =5 \mu F, R_{1}= 5 M\Omega , and v_{0}= 60 u(t)  V.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For t = 0-, v(0) = 0.

For t > 0, the circuit is as shown below.

At node a,

\begin{array}{l}\left(\mathrm{v}_{\mathrm{o}}-\mathrm{v} / \mathrm{R}_{1}=\left(\mathrm{v} / \mathrm{R}_{2}\right)+\mathrm{C}_{2} \mathrm{d} \mathrm{v} / \mathrm{dt}\right. \\\\\mathrm{v}_{\mathrm{o}}=\mathrm{v}\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{dv} / \mathrm{dt} \\\\60=(1+5 / 2.5)+\left(5 \times 10^{6} \times 5 \times 10^{-6}\right) \mathrm{dv} / \mathrm{dt} \\\\60=3 \mathrm{v}+25 \mathrm{dv} / \mathrm{dt} \\\\\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\mathrm{Ae}^{-3 \mathrm{t} / 25}\right] \\\\ \text{where}    3 \mathrm{V}_{\mathrm{s}}=60 \text { yields } \mathrm{V}_{\mathrm{s}}=20 \\\\\mathrm{v}(0)=0=20+\mathrm{A} \text { or } \mathrm{A}=-20 \\\\\mathrm{v}(\mathrm{t})={20}\left(1-\mathrm{e}^{-3 t / 25}\right) \mathrm{V}\end{array}
Capture

Related Answered Questions