(a) Doing the (trivial) ϕ integral, and changing the remaining integration variable from θ to u(du=pEsinθdθ) ,
⟨u⟩=∫−pEpEe−u/kTdu∫−pEpEue−u/kTdu=−kTe−u/kT∣−pEpE(kT)2e−u/kT[−(u/kT)−1]∣−pEpE
=kT{e−pE/kT−epE/kT[e−pE/kT−epE/kT]+[(pE/kT)e−pE/kT+(pE/kT)epE/kT]}
=kT−pE[epE/kT−e−pE/kTepE/kT+e−pE/kT]=kT−pEcoth(kTpE) .
P=N⟨p⟩;p=⟨pcosθ⟩E^=⟨p⋅E⟩(E^/E)=−⟨u⟩(E^/E);P=NppE−⟨u⟩=Np{coth(kTpE)−pEkT} .
Let y≡P/Np,x≡pE/kT. Then y=cothx−1/x. As x→0,y=(x1+3x−45x3+⋯)−x1=3x−45x3+⋯→0 , so the graph starts at the origin, with an initial slope of 1/3. As x→∞,y→coth(∞)=1 , so the graph goes asymptotically to y = 1 (see Figure).
(b) For small x,y≈31x, so NpP≈3kTpE, or P≈3kTNp2E=ϵ0χeE⇒P is proportional to E, and χe=3ϵ0kTNp2 .
For water at 20∘=293K,p=6.1×10−30Cm;N= volume molecules = mole molecules × gram moles × volume grams .
N=(6.0×1023)×(181)×(106)=0.33×1029;χe=(3)(8.85×10−12)(1.38×10−23)(293)(0.33×1029)(6.1×10−30)2=12. Table 4.2 gives an experimental value of 79, so it’s pretty far off.
For water vapor at 100° = 373 K, treated as an ideal gas, mole volume =(22.4×10−3)×(293373)=2.85×10−2m3 .
N=2.85×10−26.0×1023=2.11×1025;χe=(3)(8.85×10−12)(1.38×10−23)(373)(2.11×1025)(6.1×10−30)2=5.7×10−3 .
Table 4.2 gives 5.9×10−3 , so this time the agreement is quite good.