We first check that static equilibrium is not maintained:
\begin{aligned}\left(F_{A}\right)_{m}+\left(F_{C}\right)_{m} & =\mu_{s}\left(m_{A}+m_{C}\right) g \\& =0.24(5+10) g \\& =3.6 g\end{aligned}
Since W_{B}=m_{B} g=10 \mathrm{~g}>3.6 \mathrm{~g}, equilibrium is not maintained.
Block A: \quad \Sigma F_{y}: \quad N_{A}=m_{A} g
F_{A}=\mu_{k} N_{A}=0.2 m_{A} g
\overset{+}{\longrightarrow } \Sigma F_{\lambda}=m_{A} a_{A}: \quad T-0.2 m_{A} g=m_{A} a_{A} (1)
Block C: \quad \Sigma F_{y}: \quad N_{C}=m_{C} g
F_{C}=\mu_{k} N_{C}=0.2 m_{C} g
\overset{+}{\longleftarrow } \Sigma F_{x}=m_{C} a_{C}: T-0.2 m_{C} g=m_{C} a_{C} (2)
Block B: \quad+\downarrow \Sigma F_{y}=m_{B} a_{B}
m_{B} g-2 T=m_{B} a_{B} (3)
From kinematics: \quad a_{B}=\frac{1}{2}\left(a_{A}+a_{C}\right) (4)
(a) Tension in cord. Given data: m_{A}=5 \mathrm{~kg}
m_{B}=m_{C}=10 \mathrm{~kg}
Eq. (1): T-0.2(5) g=5 a_{A} \quad a_{A}=0.2 T-0.2 g (5)
Eq. (2): T-0.2(10) g=10 a_{C} \quad a_{C}=0.1 T-0.2 g (6)
Eq. (3): 10 g-2 T=10 a_{B} \quad a_{B}=g-0.2 T (7)
Substitute into (4):
\begin{aligned}g-0.2 T & =\frac{1}{2}(0.2 T-0.2 g+0.1 T-0.2 g) \\1.2 g & =0.35 T \quad T=\frac{24}{7} g=\frac{24}{7}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\end{aligned}
T=33.6 \mathrm{~N}\blacktriangleleft
(b) Substitute for T into (5), (7), and (6):
\begin{array}{lr}a_{A}=0.2\left\lgroup\frac{24}{7} g\right\rgroup-0.2 g=0.4857\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{A}=4.76 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow\blacktriangleleft \\a_{B}=g-0.2\left\lgroup\frac{24}{7} g\right\rgroup=0.3143\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{B}=3.08 \mathrm{~m} / \mathrm{s}^{2}\downarrow \blacktriangleleft \\a_{C}=0.1\left\lgroup\frac{24}{7} g\right\rgroup-0.2 g=0.14286\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{C}=1.401 \mathrm{~m} / \mathrm{s}^{2}\longleftarrow \blacktriangleleft\end{array}