The diode current is 0.6 mA when the applied voltage is 400 mV, and 20 mA when the applied voltage is 500 mV. Determine η. Assume \frac{kT}{q}= 25 mV
The diode current is 0.6 mA when the applied voltage is 400 mV, and 20 mA when the applied voltage is 500 mV. Determine η. Assume \frac{kT}{q}= 25 mV
The diode current, I=I_{o}\left(e^{\frac{qV }{\eta KT} }-1 \right)
Therefore, 0.6\times 10^{-3} =I_{o}\left(e^{\frac{qV }{\eta KT} }-1 \right)=I_{o}e^{\frac{qV }{\eta KT} }
=I_{o}e^{\frac{400 }{25\eta} }=I_{o}e^{\frac{16 }{\eta} } (1)
Also, 20\times 10^{-3}=I_{o}e^{\frac{500 }{25\eta} }=I_{o}e^{\frac{20 }{\eta} } (2)
Dividing Eq. (2) by Eq. (1), we get
\frac{20\times 10^{-3} }{0.6\times 10^{-3} } =\frac{I_{o}e^{\frac{20 }{\eta} }}{I_{o}e^{\frac{16 }{\eta} }}
Therefore, \frac{100}{3} =e^{\frac{4}{\eta } }
Taking natural logarithms on both sides, we get
\log _{e}\frac{100}{3} =\frac{4}{\eta }
3.507=\frac{4}{\eta }
Therefore, \eta=\frac{4}{3.507} =1.14