Question 2.5.2: The electric field vector of a wave is given as E→=E0 e^j(ωt...

The electric field vector of a wave is given as \overrightarrow{ E }= E _{0} e ^{ j (\omega t+3 x-4 y)} \frac{8 \vec{a}_{x}+6 \vec{a}_{y}+5 \vec{a}_{z}}{\sqrt{125}} V / m

Its frequency is 10 GHz

(i) Investigate if this wave is a plane wave,

(ii) Determine its propagation constant, and

(iii) Calculate the phase velocity in y-direction

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}&\vec{E}=E_{0}^{J(\omega t+3 x-4 y)} \frac{8 a_{x}+6 a_{y}+5 a_{z}}{\sqrt{125}} V / m \\&f=10 \times 10^{9} Hz\end{aligned}

(a)  P_{a \nu g_{1}}=\frac{\left|E_{1}\right|^{2}}{2 \eta_{0}}=0.997 w / m ^{2}

(b)   \varepsilon=\varepsilon^{\prime}-j \varepsilon^{\prime \prime} \varepsilon^{\prime}=9 \varepsilon_{0}

 

\begin{aligned}&\varepsilon^{\prime \prime}=0.09 \varepsilon_{0}=10^{-3} \varepsilon^{\prime} . \\&\alpha=\frac{\omega}{2} E^{\prime \prime} \sqrt{\frac{40}{E^{\prime}}}=6.29 \times 10^{-3} n / m\end{aligned}

Skin depth = α = 1/α = 159 m

(c)   E_{2}=E_{1} e^{-\alpha x}

 

\begin{aligned}x &=5 f=5 / \alpha \\E_{2} &=E_{1} e^{-\alpha 5 / \alpha}=E_{1} e^{-5} \\\eta_{2} &=\sqrt{\frac{\mu_{0}}{E^{1}}}=\sqrt{\frac{\mu_{0}}{9 E_{0}}}=\frac{1}{3} \times 120 \pi=40 \pi \\P_{2} &=\frac{E_{2}^{2}}{2 \eta_{2}}=\frac{339.24}{80 \pi} e^{-10} \\P_{2} &=3 e^{-10} w / m ^{2}\end{aligned}

(i)   \beta_{x}=-3, \beta_{y}=+4, \beta_{z}=0

 

\hat{\eta}=\frac{8 \hat{a}_{x}}{\sqrt{125}}+\frac{6 \hat{a}_{y}}{\sqrt{125}}+\frac{5 \hat{a}_{z}}{\sqrt{125}} , which conclude that the given field vector represents a plane wave in direction of x^{n}.

(ii)   \beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}=\beta^{2}\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C\right)

 

\begin{gathered}=\beta^{2}\left(\frac{64}{125}+\frac{36}{125}\right)=\frac{4}{5} \beta^{2} \\\frac{4}{5} \beta^{2}=(-3)^{2}+(4)^{2}=25^{2}, \Rightarrow \beta=5.59 \\\gamma=\alpha+_{j} \beta=0+j 5.59 \\=5.39 j\end{gathered}

(iii) Phase velocity in the y-direction.

V_{y}=\frac{\omega}{\beta_{y}}=\frac{\omega}{\beta \cos \beta}=\frac{2 \pi \times 10^{10}}{4}=1.57 \times 10^{10} m / sec

Related Answered Questions