Question 8.186E: The exit nozzle in a jet engine receives air at 2100 R, 20 p...

The exit nozzle in a jet engine receives air at 2100 R, 20 psia with negligible kinetic energy. The exit pressure is 10 psia and the actual exit temperature is 1780 R. What is the actual exit velocity and the second law efficiency?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Nozzle with air has no work, no heat transfer.

Energy eq.:              h _{ i }= h _{ e }+\frac{1}{2} V _{ ex }^{2}

Entropy Eq.:          s _{ i }+ s _{ gen }= s _{ e }

\frac{1}{2} V _{ ex }^{2}= h _{ i }- h _{ e }=532.57-444.36=88.21   Btu / lbm

 

V _{ ex }=\sqrt{2 \times 88.21 \times 25037}= 2 1 0 2 ~ f t   s ^{-1}

 

Recall      1  Btu / lbm =25037   ft ^{2} / s ^{2} . This was the actual nozzle. Now we can do the reversible nozzle, which then must have a q.

Energy eq.:                h _{ i }+ q = h _{ e }+\frac{1}{2} V _{\text {ex  rev }}^{2}

Entropy Eq.:            s _{ i }+ q / T _{ o }= s _{ e } \quad \Rightarrow q = T _{ o }\left( s _{ e }- s _{ i }\right)

\begin{aligned}q &= T _{ o }\left[ C \ln \frac{ T _{ e }}{ T _{ i }}- R \ln \frac{ P _{ e }}{ P _{ i }}\right]=536.7\left[0.24 \ln \frac{1780}{2100}-\frac{53.34}{778.17} \ln \frac{10}{20}\right] \\&=4.198   Btu / lbm\end{aligned}

 

\frac{1}{2} V _{\text {ex rev }}^{2}= h _{ i }+ q – h _{ e }=88.21+4.198=92.408   Btu / lbm

 

\eta_{ II }=\frac{1}{2} V _{ ex }^{2} / \frac{1}{2} V _{\text {ex rev }}^{2}=88.21 / 92.408= 0 . 9 5

 

Notice the reversible nozzle is not isentropic (there is a heat transfer).

 

 

 

 

 

 

Related Answered Questions