Question 10.52: The following data relate to a connecting rod of a reciproca...

The following data relate to a connecting rod of a reciprocating engine:

Mass=60 kg, distance between bearing centres=900 mm, diameter of small end bearing=80 mm, diameter of big end bearing=100 mm, time of oscillation when the connecting rod is suspended from small end=1.85 s, time of oscillation when the connecting rod is suspended from big end=1.70 s.
Determine (a) the radius of gyration of the rod about an axis passing through the centre of gravity and perpendicular to the plane of oscillation, (b) the moment of inertia of the rod about the same axis, and (c) the dynamically equivalent system for the connecting rod, consisting of two masses, one of which is situated at the small end centre.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer to Fig 10.38.

\text { Given: } m=60 kg , l=900 mm , d_{1}=80 mm , d_{2}=100 mm , T_{1}=1.85 s , T_{2}=1.70 s .

(a) For an equivalent simple pendulum,

T_{1}=2 \pi \sqrt{\frac{l_{e 1}}{g}} .

1.85=2 \pi \sqrt{\frac{l_{e 1}}{9.81}} .

l_{e 1}=0.85 m .

=\frac{K^{2}+a_{1}^{2}}{a_{1}} .

K^{2}=a_{1}\left(0.85-a_{1}\right)           (1).

T_{2}=2 \pi \sqrt{\frac{l_{e 2}}{g}} .

1.70=2 \pi \sqrt{\frac{l_{e 2}}{9.81}} .

l_{e 2}=0.718 m .

=\frac{K^{2}+a_{2}^{2}}{a_{2}} .

K^{2}=a_{2}\left(0.718-a_{2}\right)                 (2).

From Eqs. (1) and (2)

a_{1}\left(0.85-a_{1}\right)=a_{2}\left(0.718-a_{2}\right) .

Now        a_{1}+a_{2}=0.900+\frac{1}{2}(80+100) 10^{-3}=0.990 m .

or      a_{2}=0.990-a_{1} .

∴    a_{1}\left(0.85-a_{1}\right)=\left(0.99-a_{1}\right)\left(0.718-0.99+a_{1}\right) .

0.85 a_{1}-a_{1}^{2}=\left(0.99-a_{1}\right)\left(a_{1}-0.272\right) .

=0.99 a_{1}-a_{1}^{2}-0.26928+0.272 a_{1} .

=1.262 a_{1}-a_{1}^{2}-0.26928 .

0.412 a_{1}=0.26928 .

a_{1}=0.6536 m .

K^{2}=0.6536(0.85-0.6536)=0.1284 m ^{2} .

K=0.3583 m.

(b)    I=m K^{2}=60 \times 0.1284=7.704 kg m ^{2} .

\text { (c) Distance of centre of gravity from small end centre, } a=a_{1}-\frac{d_{1}}{2} .

=0.6536-\frac{0.08}{2}=0.6136 m .

\text { Let } m_{a}=\text { mass placed at small end centre } .

m_{b}=\text { second mass } .

b=\text { distance of } m_{b} \text { from centre of gravity } .

For dynamically equivalent system,

a b=K^{2} .

b=\frac{K^{2}}{a}=\frac{0.1284}{0.6136}=0.2092 m

Now      m_{a}=\frac{b m}{a+b}=\frac{0.2092 \times 60}{0.6136+0.2092}=15.25 kg .

m_{b}=m-m_{a}=60-15.25=44.75 kg .

10.38

Related Answered Questions