Question 5.P.6: The Hamiltonian of a system is H =ε σ . n, where ε is a cons...

The Hamiltonian of a system is \hat{H}=\varepsilon \vec{\sigma }.\vec{n}, where ε is a constant having the dimensions of energy, \vec{n} is an arbitrary unit vector, and \sigma _{x} ,\sigma _{y}, and \sigma _{z} are the Pauli matrices.

(a) Find the energy eigenvalues and normalized eigenvectors of \hat{H} .

(b) Find a transformation matrix that diagonalizes \hat{H} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using the Pauli matrices \sigma _{x}=\left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right) ,\sigma _{y}=\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right),\sigma _{z}=\left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right) and the expression of an arbitrary unit vector in spherical coordinates \vec{n}=(\sin \theta \cos \varphi )\vec{i}+(\sin \theta \sin \varphi )\vec{j}+(\cos \theta )\vec{k}, we can rewrite the Hamiltonian

\hat{H}=\varepsilon \vec{\sigma }.\vec{n}=\varepsilon (\sigma _{x}\sin \theta \cos \varphi +\sigma _{y}\sin \theta \sin \varphi + \sigma _{z}\cos \theta )            (5.249)

in the following matrix form:

\hat{H}=\varepsilon \left(\begin{matrix} \cos \theta & \exp (-i\varphi )\sin \theta \\ \exp (i\varphi )\sin \theta & -\cos \theta \end{matrix} \right).             (5.250)

The eigenvalues of \hat{H} are obtained by solving the secular equation \det (H-E)=0, or

(\varepsilon \cos \theta -E)(-\varepsilon \cos \theta -E)-\varepsilon ^{2} \sin ^{2} \theta =0,                     (5.251)

which yields two eigenenergies E_{1} =\varepsilon and E_{2} =-\varepsilon .

The energy eigenfunctions are obtained from

\varepsilon \left(\begin{matrix} \cos \theta & \exp (-i\varphi )\sin \theta \\ \exp (i\varphi )\sin \theta & -\cos \theta \end{matrix} \right)\left(\begin{matrix} x \\ y \end{matrix} \right) =E\left(\begin {matrix} x \\ y \end{matrix} \right).            (5.252)

For the case E=E_{1} =\varepsilon, this equation yields

(\cos \theta -1)x+y\sin \theta \exp (-i\varphi )=0,                  (5.253)

which in turn leads to

\frac{x}{y} =\frac{\sin \theta \exp (-i\varphi )}{1-\cos \theta } =\frac{\cos \theta /2\exp (-i\varphi /2)}{\sin \theta /2\exp (i\varphi /2)};             (5.254)

hence

\left(\begin{matrix} x_{1} \\ y_{1} \end{matrix} \right) =\left (\begin{matrix} \exp (-i\varphi /2)\cos (\theta /2) \\ \exp (i\varphi /2)\sin (\theta /2) \end{matrix} \right) ;                  (5.255)

this vector is normalized. Similarly, in the case where E=E_{2} =-\varepsilon, we can show that the second normalized eigenvector is

\left(\begin{matrix} x_{2} \\ y_{2} \end{matrix} \right) =\left (\begin{matrix} -\exp (-i\varphi /2)\sin (\theta /2) \\ \exp (i\varphi /2)\cos (\theta /2) \end{matrix} \right).                   (5.256)

(b) A transformation \hat{U} that diagonalizes \hat{H} can be obtained from the two eigenvectors obtained in part (a): U_{11} =x_{1},U_{21} =y_{1},U_{12} =x_{2},U_{22} =y_{2}. That is,

U=\left(\begin{matrix} \exp (-i\varphi /2)\cos (\theta /2) & -\exp (-i\varphi /2)\sin (\theta /2) \\ \exp (i\varphi /2)\sin (\theta /2) & \exp (i\varphi /2)\cos (\theta /2) \end{matrix} \right) .             (5.257)

Note that this matrix is unitary, since U^{\dagger } =U^{-1} and \det (U)=1. We can ascertain that

\hat{U}\hat{H}\hat{U}^{\dagger } =\left(\begin{matrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{matrix} \right).             (5.258)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...