Question 13.42: The ideal column is subjected to the force F at its midpoint...

The ideal column is subjected to the force F at its midpoint and the axial load P. Determine the maximum moment in the column at midspan. E I is constant. Hint: Establish the differential equation for deflection, Eq. 13-1. The general solution is v=C_{1} \sin k x+C_{2} \cos k x-c^{2} x / k^{2}, where c^{2}=F / 2 E I, k^{2}=P / E I.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment Functions: FBD(b).

\circlearrowright+\Sigma M_{o}=0 ; \quad M(x)+\frac{F}{2} x+P(v)=0 \\M(x)=-\frac{F}{2} x-P v

Differential Equation of The Elastic Curve:

E I \frac{d^{2} v}{d x^{2}}=M(x) \\E I \frac{d^{2} v}{d x^{2}}=-\frac{F}{2} x-P v \\\frac{d^{2} v}{d x^{2}}+\frac{P}{E I} v=-\frac{F}{2 E I} x\quad(1)

The solution of the above differential equation is of the form,

v=C_{1} \sin \left(\sqrt{\frac{P}{E I}} x\right)+C_{2} \cos \left(\sqrt{\frac{P}{E I}} x\right)-\frac{F}{2 P} x \quad(2)

and

\frac{d v}{d x}=C_{1} \sqrt{\frac{P}{E I}} \cos \left(\sqrt{\frac{P}{E I}} x\right)-C_{2} \sqrt{\frac{P}{E I}} \sin \left(\sqrt{\frac{P}{E I}} x\right)-\frac{F}{2 P} \quad(3)

The integration constants can be determined from the boundary conditions.
Boundary Conditions:
At x=0, v=0 . From Eq. [2], C_{2}=0
At x=\frac{L}{2}, \frac{d v}{d x}=0 . From Eq.[3],

0=C_{1} \sqrt{\frac{P}{E I}} \cos \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{F}{2 P} \\C_{1}=\frac{F}{2 P} \sqrt{\frac{E I}{P}} \sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)

Elastic Curve:

v=\frac{F}{2 P} \sqrt{\frac{E I}{P}} \sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right) \sin \left(\sqrt{\frac{P}{E I}} x\right)-\frac{F}{2 P} x \\=\frac{F}{2 P}\left[\sqrt{\frac{E I}{P}} \sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right) \sin \left(\sqrt{\frac{P}{E I}} x\right)-x\right]
However, v=v_{\max } at x=\frac{L}{2}. Then,

v_{\max } =\frac{F}{2 P}\left[\sqrt{\frac{E I}{P}} \sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right) \sin \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{L}{2}\right] \\=\frac{F}{2 P}\left[\sqrt{\frac{E I}{P}} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{L}{2}\right]

Maximum Moment: The maximum moment occurs at x=\frac{L}{2}. From Eq.[1],

M_{\max } =-\frac{F}{2}\left(\frac{L}{2}\right)-P v_{\max } \\=-\frac{F L}{4}-P\left\{\frac{F}{2 P}\left[\sqrt{\frac{E I}{P}} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{L}{2}\right]\right\} \\=-\frac{F}{2} \sqrt{\frac{E I}{P}} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)
2

Related Answered Questions