Question 9.40: The impedance per phase of a double cage induction motor are...

The impedance per phase of a double cage induction motor are:

Inner cage-(0.06 +j0.5) ohm; Outer cage – (0.6 + j0.12) ohm,

Estimate the toque in synchronous watt per phase at standstill and 4% slip considering that the rotor equivalent induced emf per phase is 110 V at standstill.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The equivalent circuit of a double-cage rotor is shown in Fig. 9.60.

Considering voltage as a reference phasor, E_{2S} = 110 \pm j0 = 110\angle 0^{\circ }

\overline{Z}_{2i} = \left(0.06 + j0.5\right) \Omega ; \overline{Z}_{2o} = \left(0.6 + j0.12\right) \Omega

 

At standstill \overline{Z}_{2i} = \left(0.06 + j0.5\right) = \sqrt{\left(0.06\right)^{2} + \left(0.5\right)^{2} } \angle \tan ^{-1} \frac{0.5}{0.06} = 0.5036\angle 92.4^{\circ } \\[0.5cm] \overline{Z}_{2o} = \left(0.6 + j0.12\right) = \sqrt{\left(0.6\right)^{2} + \left(0.12\right)^{2} } \angle \tan ^{-1} \frac{0.12}{0.6} = 0.612\angle 12.57^{\circ } \\[0.5cm] \overline{Z}_{2i} + \overline{Z}_{2o} = \left(0.06 + 0.6 +j0.5 + j0.12\right) = \left(0.66 + j0.62\right) = 0.906\angle 48^{\circ }

Total impedance of the two cages

\overline{Z}_{2} = \frac{\overline{Z}_{2i} \overline{Z}_{2o}}{\left(\overline{Z}_{2i} + \overline{Z}_{2o}\right) } = \frac{\left(0.5036\angle 92.4^{\circ }\right) \left(0.612\angle 12.57^{\circ }\right) }{\left(0.906\angle 48^{\circ }\right)} \\[0.5cm] \quad \; = 0.34 \angle 56.97^{\circ } = \left(0.34 \cos 56.97^{\circ } + j 0.34 \sin 56.93^{\circ }\right) \\[0.5cm] \quad \; = \left(0.2127 + j 0.2652\right) ohm

 

Rotor current at standstill

\overline{I}_{2S} = \frac{\overline{E}_{2S} }{\overline{Z}_{2} } = \frac{110 \angle 0^{\circ }}{0.34 \angle 56.97^{\circ }} = 323.5 \angle \boxtimes 56.97^{\circ }

 

Synchronising power or torque developed per phase in the rotor at start

T_{syn} = I^{2}_{2S} R_{2S} = \left(323.5\right)^{2} \times 0.2127 = \mathbf{22260  syn.  watt}

 

At a slip of 4% \overline{Z}_{2i} = \left(\frac{0.06}{0.04} + j0.5\right) = \left(1.5 + j0.5\right) = 1.58\angle 20.48^{\circ } \\[0.5cm] \overline{Z}_{2o} = \left(\frac{0.6}{0.04} + j0.12\right) = \left(15 + j0.12\right) = 15 \angle 0.5^{\circ } \\[0.5cm] \overline{Z}_{2i} + \overline{Z}_{2o} = \left(1.5 + j0.5 + 15 + j0.12\right) = \left(16.5 + j0.62\right) = 16.51 \angle 2.39^{\circ }

Total impedance of the two cages

\overline{Z}_{2} = \frac{\overline{Z}_{2i} \overline{Z}_{2o}}{\left(\overline{Z}_{2i} + \overline{Z}_{2o}\right) } = \frac{\left(1.58 \angle 20.48^{\circ }\right) \left(15 \angle 0.5^{\circ }\right) }{16.51 \angle 2.39^{\circ }} = 1.435 \angle 18.59^{\circ } \\[0.5cm] \quad \; = 1.435 \left(\cos 18.59^{\circ } + j \sin 18.59^{\circ } \right) = \left(1.374 = j 0.413\right) ohm

 

Rotor current during running

\overline{I}_{2} = \frac{S\overline{E}_{2S} }{\overline{Z}_{2} } = \frac{0.04 \times 110 \angle 0^{\circ }}{1.435 \angle 18.59} = 3.07 \angle -18.59^{\circ }

 

Synchronous power or torque developed per phase in the rotor,

T_{syn} = I^{2}_{2} R_{2} = \left(3.07\right)^{2} \times 1.374 = \mathbf{12.95  syn.  watt}
9.60

Related Answered Questions