Question 7.26: The Lennard-Jones parameters that describe intermolecular in...

The Lennard-Jones parameters that describe intermolecular interactions for a compound are ε=1 kJ/mol and σ=0.4 nm.

A) Determine the intermolecular distance at which potential energy is minimized.
B) Determine the potential energy when the intermolecular distance is 0.5 nm.
C) Determine the potential energy when the intermolecular distance is 0.39 nm.
D) Make a complete plot of potential energy in kJ/mol vs. intermolecular distance in nm.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) We are looking for a minimum; a point at which:

\frac{\mathrm{d} \Gamma}{\mathrm{dr}}=0

We want to find the distance r that the following equation is minimized:

\begin{aligned}& \Gamma=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^6\right] \\& \frac{\mathrm{d} \Gamma}{\mathrm{dr}}=4 \epsilon\left[-12 \sigma^{12}\left(\frac{1}{r}\right)^{13}+6 \sigma^6\left(\frac{1}{r}\right)^7\right]=0 \\& 12 \sigma^{12}\left(\frac{1}{r}\right)^{13}=6 \sigma^6\left(\frac{1}{r}\right)^7 \\& 2 \sigma^6=r^6 \\& r=\left[2(0.4 \mathrm{~nm})^6\right]^{1 / 6} \\&\bf r=0.449 ~nm\end{aligned}

B)

\begin{aligned}& \Gamma=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^6\right] \\& \Gamma=4\left(1 \frac{\mathrm{kJ}}{\mathrm{mol}}\right)\left[\left(\frac{(0.4 \mathrm{~nm})}{(0.5 \mathrm{~nm})}\right)^{12}-\left(\frac{(0.4 \mathrm{~nm})}{(0.5 \mathrm{~nm})}\right)^6\right]=-\mathbf{0 . 7 7 4} \frac{\mathbf{k J}}{\mathbf{m o l}}\end{aligned}

C)

\begin{aligned}\Gamma & =4 \epsilon\left[\left(\frac{\sigma}{\mathrm{r}}\right)^{12}-\left(\frac{\sigma}{\mathrm{r}}\right)^6\right] \\\Gamma & =4\left(1 \frac{\mathrm{kJ}}{\mathrm{mol}}\right)\left[\left(\frac{(0.4 \mathrm{~nm})}{(0.39 \mathrm{~nm})}\right)^{12}-\left(\frac{(0.4 \mathrm{~nm})}{(0.39 \mathrm{~nm})}\right)^6\right]=\mathbf{0 . 7 6 4} \frac{\mathbf{k J}}{\mathbf{m o l}}\end{aligned}

D)

7.26

Related Answered Questions