The member is subject to a shear force of V = 2 kN . Determine the shear flow at points A, B, and C. The thickness of each thin-walled segment in 15 mm.
The member is subject to a shear force of V = 2 kN . Determine the shear flow at points A, B, and C. The thickness of each thin-walled segment in 15 mm.
Section Properties:
\bar{y} =\frac{\Sigma \bar{y} A}{\Sigma A}=\frac{0.0075(0.2)(0.015)+0.0575(0.115)(0.03)+0.165(0.3)(0.015)}{0.2(0.015)+0.115(0.03)+0.3(0.015)}
=0.08798 \mathrm{m}
I_{N A}=\frac{1}{12}(0.2)\left(0.015^{3}\right)+0.2(0.015)(0.08798-0.0075)^{2}
+\frac{1}{12}(0.03)\left(0.115^{3}\right)+0.03(0.115)(0.08798-0.0575)^{2}
+\frac{1}{12}(0.015)\left(0.3^{3}\right)+0.015(0.3)(0.165-0.08798)^{2}
=86.93913\left(10^{-6}\right) \mathrm{m}^{4}
Q_{A} =0
Q_{B} =\bar{y}_{1}^{\prime} A^{\prime}=0.03048(0.115)(0.015)=52.57705\left(10^{-6}\right) \mathrm{m}^{-3}
Q_{C} =\Sigma \bar{y_{1}}^{\prime} A^{\prime}
=0.03048(0.115)(0.015)+0.08048(0.0925)(0.015)
=0.16424\left(10^{-3}\right) \mathrm{m}^{3}
Shear Flow:
q_{A}=\frac{V Q_{A}}{I}=0q_{B}=\frac{V Q_{B}}{I}=\frac{2\left(10^{3}\right)(52.57705)\left(10^{-6}\right)}{86.93913\left(10^{-6}\right)}=1.21 \mathrm{kN/m}
q_{C}=\frac{V Q_{C}}{I}=\frac{2\left(10^{3}\right)(0.16424)\left(10^{-3}\right)}{86.93913\left(10^{-6}\right)}=3.78 \mathrm{kN/m}