Question 7.73: The member is subject to a shear force of  V = 2 kN . Determ...

The member is subject to a shear force of  V = 2 kN . Determine the shear flow at points A, B, and C. The thickness of each thin-walled segment in 15 mm.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section Properties:

\bar{y} =\frac{\Sigma \bar{y} A}{\Sigma A}

 

=\frac{0.0075(0.2)(0.015)+0.0575(0.115)(0.03)+0.165(0.3)(0.015)}{0.2(0.015)+0.115(0.03)+0.3(0.015)}

 

=0.08798  \mathrm{m}

 

I_{N A}=\frac{1}{12}(0.2)\left(0.015^{3}\right)+0.2(0.015)(0.08798-0.0075)^{2}

 

 

+\frac{1}{12}(0.03)\left(0.115^{3}\right)+0.03(0.115)(0.08798-0.0575)^{2}

 

 

+\frac{1}{12}(0.015)\left(0.3^{3}\right)+0.015(0.3)(0.165-0.08798)^{2}

 

=86.93913\left(10^{-6}\right) \mathrm{m}^{4}

 

Q_{A} =0

 

Q_{B} =\bar{y}_{1}^{\prime} A^{\prime}=0.03048(0.115)(0.015)=52.57705\left(10^{-6}\right)  \mathrm{m}^{-3}

 

Q_{C} =\Sigma \bar{y_{1}}^{\prime} A^{\prime}

 

=0.03048(0.115)(0.015)+0.08048(0.0925)(0.015)

 

=0.16424\left(10^{-3}\right)  \mathrm{m}^{3}

 

Shear Flow:

q_{A}=\frac{V Q_{A}}{I}=0

 

q_{B}=\frac{V Q_{B}}{I}=\frac{2\left(10^{3}\right)(52.57705)\left(10^{-6}\right)}{86.93913\left(10^{-6}\right)}=1.21  \mathrm{kN/m}

 

q_{C}=\frac{V Q_{C}}{I}=\frac{2\left(10^{3}\right)(0.16424)\left(10^{-3}\right)}{86.93913\left(10^{-6}\right)}=3.78  \mathrm{kN/m}

Related Answered Questions