Question 5.64: The pin-connected structure shown in Figure P5.64 consists o...

The pin-connected structure shown in Figure P5.64 consists of two cold-rolled steel [E = 30,000 ksi; α = 6.5 × 10610^{-6}/°F] bars (1) and a bronze [E = 15,000 ksi; α = 12.2 × 10610^{-6}/°F] bar (2) that are connected at pin D. All three bars have cross-sectional areas of 1.250  in. 2\text { in. }^{2} . Assume an initial geometry of a = 10 ft and b = 18 ft. A load of P = 34 kips is applied to the structure at pin D, and the temperature increases by 60°F. Calculate:
(a) the normal stresses in bars (1) and (2).
(b) the downward displacement of pin D.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD of joint D. Assume tension forces in bars (1) and (2).

 

tanθ=ba=18 ft10 ft=1.8θ=60.9454ΣFx=F1cosθ+F1cosθ=0ΣFy=F1sinθ+F2+F1sinθP=02F1sinθ+F2=P              (a)\begin{aligned}\tan \theta &=\frac{b}{a}=\frac{18  ft }{10  ft }=1.8 \quad \theta=60.9454^{\circ} \\\Sigma F_{x} &=-F_{1} \cos \theta+F_{1} \cos \theta=0 \\\Sigma F_{y} &=F_{1} \sin \theta+F_{2}+F_{1} \sin \theta-P=0 \\& \therefore 2 F_{1} \sin \theta+F_{2}=P                            (a)\end{aligned}

 

Geometry-of-deformation relationship
Draw a deformation diagram. We imagine temporarily removing the pin at D and allowing the members to elongate independently. Then, after deformation, bars (1) are rotated so that they intersect the lower end of bar (2), and the pin at D is reinserted. If we assume that the deformations will be small, then the angle after deformation is approximately the same as the angle before deformation. From the deformation diagram geometry, we can assert that:

 

δ1sin60.9454=δ2\frac{\delta_{1}}{\sin 60.9454^{\circ}}=\delta_{2}

 

(b)

Force-Deformation Relationships
The relationship between the internal force and the deformation of an axial member can be stated for bars (1) and (2) as:

 

δ1=F1L1A1E1+α1ΔT1L1δ2=F2L2A2E2+α2ΔT2L2\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}                              (c)

 

Compatibility Equation

Substitute the force-deformation relationships (c) into the geometry-of-deformation relationship (b) to derive the compatibility equation:

 

1sin60.9454[F1L1A1E1+α1ΔT1L1]=F2L2A2E2+α2ΔT2L2\frac{1}{\sin 60.9454^{\circ}}\left[\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}\right]=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}                                       (d)

 

Solve the Equations
From the problem statement, A1=A2A_{1}=A_{2}. The bar lengths are:

 

L1=(10 ft)2+(18 ft)2=20.5913 ft=247.0951 in.L2=18 ft=216 in.L_{1}=\sqrt{(10  ft )^{2}+(18  ft )^{2}}=20.5913  ft =247.0951  in . \quad L_{2}=18  ft =216  in.

 

Additionally, the temperature change is the same for all members. Use these facts and solve Eq. (d) for F2F_{2}:

 

 

F2L2A2E2=1sin60.9454[F1L1A1E1+α1ΔT1L1]α2ΔT2L2F2=A2E2L2sin60.9454[F1L1A1E1+α1ΔT1L1]α2ΔT2L2A2E2L2=F1(L1L2sin60.9454)(E2E1)+[α1L1L2sin60.9454α2]A2E2ΔT=F1(20.5913 ft(18 ft)sin60.9454)(15,000 ksi30,000 ksi)+[(6.5×106/F)(20.5913 ft)(18 ft)sin60.9454(12.2×106/F)](1.25 in.2)(15,000 ksi)(60F)=F1(0.654321)4.155555 kips\begin{aligned}\frac{F_{2} L_{2}}{A_{2} E_{2}} &=\frac{1}{\sin 60.9454^{\circ}}\left[\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}\right]-\alpha_{2} \Delta T_{2} L_{2} \\F_{2}=& \frac{A_{2} E_{2}}{L_{2} \sin 60.9454^{\circ}}\left[\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}\right]-\alpha_{2} \Delta T_{2} L_{2} \frac{A_{2} E_{2}}{L_{2}} \\=& F_{1}\left(\frac{L_{1}}{L_{2} \sin 60.9454^{\circ}}\right)\left(\frac{E_{2}}{E_{1}}\right)+\left[\frac{\alpha_{1} L_{1}}{L_{2} \sin 60.9454^{\circ}}-\alpha_{2}\right] A_{2} E_{2} \Delta T \\=& F_{1}\left(\frac{20.5913  ft }{(18  ft ) \sin 60.9454^{\circ}}\right)\left(\frac{15,000  ksi }{30,000  ksi }\right) \\&+\left[\frac{\left(6.5 \times 10^{-6} /{ }^{\circ} F \right)(20.5913  ft )}{(18  ft ) \sin 60.9454^{\circ}}-\left(12.2 \times 10^{-6} /{ }^{\circ} F \right)\right]\left(1.25  in .{ }^{2}\right)(15,000  ksi )\left(60^{\circ} F \right) \\=& F_{1}(0.654321)-4.155555  kips\end{aligned}

 

Substitute this result in Eq. (a) and solve for F1:F_{1}:

 

2F1sin60.9454+F1(0.654321)4.155555 kips =34 kips F1=38.155555 kips 2.402636=15.8807 kips \begin{aligned}2 F_{1} \sin 60.9454^{\circ}+F_{1}(0.654321)-4.155555 \text { kips } &=34 \text { kips } \\& \therefore F_{1}=\frac{38.155555 \text { kips }}{2.402636}=15.8807 \text { kips }\end{aligned}

 

The force in bar (2) is therefore:

 

F2=(15.8807 kips)(0.654321)4.155555 kips =6.2355 kips F_{2}=(15.8807  kips )(0.654321)-4.155555 \text { kips }=6.2355 \text { kips }

 

(a) Normal stresses in bars (1) and (2). The normal stresses in bars (1) and (2) can now be calculated:

 

σ1=F1A1=15.8807 kips 1.25 in.2=12.70 ksiσ2=F2A2=6.2355kips1.25 in.2=4.99 ksi\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{15.8807 \text { kips }}{1.25  in .^{2}}=12.70  ksi \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{6.2355 kips }{1.25  in .^{2}}=4.99  ksi\end{aligned}

 

(b) Downward displacement of pin D. The downward displacement of pin D is simply equal to the deformation of bar (2).

 

δ2=F2L2A2E2+α2ΔT2L2=(6.2355 kips)(216 in.)(1.25 in.2)(15,000 ksi)+(12.2×106/F)(60F)(216in.)=0.2299 in.vD=0.230 in\begin{aligned}\delta_{2} &=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}=\frac{(6.2355  kips )(216  in .)}{\left(1.25  in .^{2}\right)(15,000  ksi )}+\left(12.2 \times 10^{-6} /{ }^{\circ} F \right)\left(60^{\circ} F \right)(216 in .)=0.2299  in . \\& \therefore v_{D}=0.230  in \downarrow\end{aligned}
5.64'
5.64''

Related Answered Questions