Question 9.4: The pneumatic amplifier shown schematically in Fig. 9.18 has...

The pneumatic amplifier shown schematically in Fig. 9.18 has been widely used in pneumatic instruments for measurement and automatic control in the process industries, for heating and ventilating controls, and in certain military and aerospace systems. It operates from a pressure source of clean air much as an electric circuit would operate from a battery. Usually the working fluid is air drawn continuously from the atmosphere by a pressure-controlled air compressor. After losing pressure as it flows through a fixed orifice of area A _{o}, the flow rate Q _{wa} approaches the branch point or node (2) from which part may flow as Q _{wb} to the bellows chamber and part may flow as Q _{wc} through the flapper-nozzle orifice back to the atmosphere.

The atmospheric pressure P _{atm} can serve as a secondary reference, but the primary reference is a perfect vacuum so that all pressures (except P _{s}) are expressed as absolute pressures.

This system is referred to as an amplifier because the energy or power required for actuating the input x _{1} is usually only a tiny fraction of the energy or power available to produce the output x _{2}. As an amplifier it is then useful, when combined with other elements, for executing control functions in complete systems.

During operation at a steady-state normal operating point, the pressure P _{2} and the output x _{2} are constant, and the flow rate Q _{wb} is zero.

(a) Find the normal operating-point values \overline{x} _{1}  and \overline{x} _{2}   when \overline{P} _{2} =0.4 P_{1} , where P_{1} =50.0{lb}/{in^{2} } absolute.

(b) Write the necessary and sufficient set of describing equations for this system and develop the state-variable equation for this first-order system using P_{2}  as the state variable and using symbols wherever possible. Assume that changes in P_{2}  occur slowly (isothermal chamber).

(c) Linearize the describing equations for small perturbations and combine to form a linearized state-variable equation, using \hat{P} _{2}  as the state variable. Write the necessary output equation for \hat{x} _{2} as the output variable.

(d) Develop the linearized system input–output differential equation relating \hat{x} _{2} to \hat{x} _{1}  and find and sketch the response of \hat{x} _{2} to a small step change in x_{1},\hat{x} _{1} ={D}/{50}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) At the normal operating point, \overline{Q} _{wa} =\overline{Q} _{wc}, and, because \left({\overline{P} _{2} }/{\overline{P} _{1} }\right) \lt 0.5, the flow through A_{o} is choked, so that, from Eq. (9.49),

\frac{Q_{wNLR} }{C_{d}A_{o} } = \begin{cases} \frac{C_{2}P_{u}}{\left(T_{u} \right) ^{0.5} }, & for\ 0\lt\frac{P_{d} }{P_{u} }\lt 0.5 \\ \frac{2C_{2}P_{u}}{\left(T_{u} \right) ^{0.5} }\left[\frac{P_{d} }{P_{u} }\left(1-\frac{P_{d} }{P_{u} }\right) \right] ^{0.5} &, for\ 0.5\lt\frac{P_{d} }{P_{u} }\lt 1.0 \end{cases} .

 

\overline{Q} _{wa} =\frac{C_{d1}A_{o} C_{2}\overline{P} _{1} }{\left(T_{atm} \right) ^{0.5} }

Because {P_{atm} }/{\overline{P} _{2} }={14.7}/{20.0}=0.735, the flow through the flapper-nozzle orifice is not
choked, so that, from Eq. (9.49),

\overline{Q} _{wc} =C_{d2} \pi D\left(\frac{\overline{x} _{1} }{2} \right) C_{2} \left(0.4\overline{P} _{1} \right) \left(2.0\right) \left[\frac{\left(0.735\right) \left(0.265\right) }{T_{atm} } \right] ^{0.5} .

Equating these flows then yields

\overline{x} _{1} =\frac{A_{o} }{\left(0.1764\right)\left(3.1416\right)\left(0.15\right) } =12.03 A_{o}.          (9.50)

For \overline{x} _{2},

\overline{x} _{2} =\frac{\left(\overline{P} _{1}-P_{atm} \right) A_{p} }{k_{s} } =\frac{45.3 A_{p} }{k_{s} }.           (9.51)

(b) The describing equations are as follows. For orifice A_{o}, by use of Eq. (9.49),

Q _{wa} =\frac{C_{d1}A_{o} C_{2}P _{1} }{\left(T_{atm} \right) ^{0.5} }.          (9.52)

For the flapper-nozzle orifice, by use of Eq. (9.49),

Q _{wc} =C_{d2} \pi D_{x1} C_{2} P_{2} \left\{\frac{\left[\left(\frac{P_{atm} }{P_{2} } \right) \left(1-\frac{P_{atm} }{P_{2} }\right) \right] }{T_{atm} } \right\} ^{0.5} .          (9.53)

For the bellows capacitor, by use of Eq. (9.39),

Q _{1} =C_{d} w_{valve}   x_{valve}   sgn\left(P_{s}-P_{1} \right) \sqrt{\frac{2}{\rho }\left|P_{s}-P_{1}\right| } ,

 

Q _{wb} =C_{fw} \frac{dP_{2} }{dt},          (9.54)

where, by use of Eq. (9.45) (isothermal case),

C _{\hat{f} } = \begin{cases} \frac{gV\left(t\right) }{RT_{1} } +\frac{gP_{1}\left(t\right)A^{2} _{p} }{RT_{1}k_{s} }, & for\ very\ slow\ changes\ in\ P_{1} \\ \frac{gV\left(t\right) }{kRT_{1} } +\frac{gP_{1}\left(t\right)A^{2} _{p} }{RT_{1}k_{s} }, & for\ very\ fast\ changes\ in\ P_{1} \end{cases} .

 

C_{fw} =\frac{gA_{p} }{RT_{atm} } \left(x_{20}+x_{2}+\frac{P_{2} A_{p} }{k_{s} } \right) .          (9.55)

For the bellows spring,

x_{2}= A_{p}\frac{P_{2}-P_{atm} }{k_{s} } ,          (9.56)

and continuity at node (2) in Fig. 9.18,

Q_{wa}= Q_{wb}+Q_{wc}.          (9.57)

\frac{dP_{2} }{dt} =\left[\left(\frac{-C_{d2}C_{2} \pi Dx_{1} }{C_{fw}\sqrt{T_{atm} } } \right) \sqrt{\left(\frac{P_{atm} }{P_{2} } \right)\left(1-\frac{P_{atm} }{P_{2} }\right) } \right] P_{2}+\left(\frac{C_{d1}C_{2}}{C_{fw}\sqrt{T_{atm} }} \right) P_{1} A_{o}.          (9.58)

(c) Linearizing Eq. (9.52) for small perturbations yields

\hat{Q} _{wa} =0.          (9.59)

For the flapper-nozzle orifice, by use of Eq. (9.53),

\hat{Q} _{wa}=k_{1} \hat{x} _{1}+k_{2} \hat{P} _{2},          (9.60)

where

k_{1} =C_{d2} \pi DC_{2} \left(P_{atm}\frac{\overline{P} _{2}-P_{atm} }{T_{atm} } \right) ,           (9.61)

k_{2} =C_{d2} \pi D\left(\frac{\overline{x} _{1} }{2} \right)\frac{C_{2}P_{atm} }{\left[T_{atm}P_{atm}\left(\overline{P} _{2}-P_{atm} \right) \right] ^{0.5} } .          (9.62)

For the bellows capacitor, from Eqs. (9.54) and (9.55),

\hat{Q} _{wb} =\frac{gA_{p} \left(x_{20}+\overline{x} _{2}+{\overline{P} _{2}A_{p} }/{k_{s} } \right) }{RT_{atm} }\frac{d\hat{P} _{2} }{dt} .          (9.63)

For the bellows spring, from Eq. (9.56),

\overline{x} _{2} =\frac{A_{p}\left(\overline{P} _{2}-P_{atm} \right) }{k_{s} } ,          (9.64)

 

\hat{x} _{2} =\left(\frac{A_{p}}{k_{s}} \right)\hat{P} _{2} .          (9.65)

Combining Eqs. (9.63), (9.64), and (9.65) yields

\hat{Q} _{wb} =k _{3} \frac{d\hat{P} _{2} }{dt} ,          (9.66)

where

k _{3} =\frac{gA_{p} \left(x_{20}-\frac{A_{p}P_{atm} }{k_{s} }+\frac{2A_{p}\overline{P} _{2} }{k_{s} } \right) }{RT_{atm} } .          (9.67)

Continuity at node (2) implies that

\hat{Q} _{wa} =\hat{Q} _{wb}+\hat{Q} _{wc}.          (9.68)

Combining Eqs. (9.59), (9.60), (9.66), and (9.68) yields

\frac{d\hat{P} _{2} }{dt} =\left(\frac{-k_{2} }{k_{3} } \right) \hat{P} _{2}+\left(\frac{-k_{1} }{k_{3} } \right) \hat{x} _{1}.          (9.69)

Rearranging Eq. (9.69), we obtain

\frac{d\hat{P} _{2} }{dt} +\left(\frac{k_{2} }{k_{3} } \right) \hat{P} _{2}=\left(\frac{-k_{1} }{k_{3} } \right) \hat{x} _{1}.          (9.70)

Solving Eq. (9.65) for \hat{P} _{2} in terms of \hat{x} _{2} yields

\hat{P} _{2}=\left(\frac{k_{s} }{A_{p} } \right) \hat{x} _{2}.          (9.71)

(d) Combining Eqs. (9.70) and (9.71) yields

\frac{d\hat{x} _{2} }{dt} +\left(\frac{k_{2} }{k_{3} } \right) \hat{x} _{2} =\left(\frac{-A_{p}k_{1} }{k_{s}k_{3} } \right) \hat{x} _{1} .          (9.72)

The input is

\hat{x} _{1} \left(t\right) = \begin{cases} 0, & for\ t < 0 \\ \frac{D}{50}, & for\ t > 0 \end{cases} .

The initial condition for the output is \hat{x} _{2} \left(0\right) =0.

The system time constant \tau ={k_{3} }/{k_{2} },

\left(\hat{x} _{2} \right)_{ss} =\frac{-k_{1}A_{p}D }{50k_{2} k_{s} } ,          (9.73)

\hat{x} _{2} \left(t\right) =\left(\frac{-k_{1}A_{p}D }{50k_{2} k_{s} }\right) \left(1-e^{{-t}/{\tau }} \right) .          (9.74)

The step change in \hat{x} _{1} and the system’s response are plotted in Fig. 9.19.

45
46

Related Answered Questions