Question 3.7: The potential V0(θ) is again specified on the surface of a s...

The potential V_{0}(\theta) is again specified on the surface of a sphere of radius R, but this time we are asked to find the potential outside, assuming there is no charge there.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In this case it’s the Al ’s that must be zero (or else V would not go to zero at∞), so

V(r, θ) =\sum\limits_{l=0}^{\infty }{\frac{B_{l}}{r^{l+1}}P_{l}(\cos \theta) }     (3.72)

At the surface of the sphere, we require that

V(r, θ) =\sum\limits_{l=0}^{\infty }{\frac{B_{l}}{r^{l+1}}P_{l}(\cos \theta) } =V_{0}(\theta).

Multiplying by P_{\acute{l}} (\cos \theta) \sin \theta and integrating—exploiting, again, the orthogonality relation 3.68—we have

\int_{-1}^{1}{P_{l} (x)P_{\acute{l}} (x) dx}=\int_{0}^{\pi}{P_{l} (\cos{\theta})P_{\acute{l}} (\cos{\theta}) \sin{\theta} d{\theta}}  \\                                                           =\begin{cases} 0,      if         \acute{l}   \neq     l, \\ \frac{2}{2l+1} ,           if     \acute{l}  =    l\end{cases}                   (3.68)

\frac{B_{\acute{l}}}{R^{\acute{l}+1}}\frac{2}{2\acute{l}+1}=\int_{0}^{\pi}{V_{0}(\theta)P_{\acute{l}} (\cos \theta) \sin \theta d\theta,}

or

B_{l}=\frac{2l+1}{2}R^{l+1} \int_{0}^{\pi}{V_{0}(\theta)P_{{l}} (\cos \theta) \sin \theta d\theta,} .                   (3.73)

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our problem.

 

 

Related Answered Questions