Question 3.6: The potential V0(θ) is specified on the surface of a hollow ...

The potential V0(θ)V_{0}(\theta) is specified on the surface of a hollow sphere,of radius R. Find the potential inside the sphere.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In this case, Bl=0B_{l} = 0 for all l—otherwise the potential would blow up at the origin.
Thus,

V(r,θ)=l=0AlrlPl(cosθ)V(r, θ) =\sum\limits_{l=0}^{\infty }{A_{l}r^{l}P_{l}(\cos{\theta})}      (3.66)

At r = R this must match the specified function V0(θ)V_{0}(\theta):

V(R,θ)=l=0AlRrlPl(cosθ)=V0(θ)V(R, θ) =\sum\limits_{l=0}^{\infty }{A_{l}Rr^{l}P_{l}(\cos{\theta})}=V_{0}(\theta)         (3.67)

Can this equation be satisfied, for an appropriate choice of coefficients Al? Yes: The Legendre polynomials (like the sines) constitute a complete set of functions, on the interval −1 ≤ x ≤ 1 (0 ≤ θ ≤ π). How do we determine the constants? Again, by Fourier’s trick, for the Legendre polynomials (like the sines) are orthogonal functions:14^{14}

11Pl(x)Plˊ(x)dx=0πPl(cosθ)Plˊ(cosθ)sinθdθ                               ={0,   if     lˊ     l,22l+1,      if   lˊ =  l\int_{-1}^{1}{P_{l} (x)P_{\acute{l}} (x) dx}=\int_{0}^{\pi}{P_{l} (\cos{\theta})P_{\acute{l}} (\cos{\theta}) \sin{\theta} d{\theta}}  \\                                                           =\begin{cases} 0,      if         \acute{l}   \neq     l, \\ \frac{2}{2l+1} ,           if     \acute{l}  =    l\end{cases}                   (3.68)

Thus, multiplying Eq. 3.67 byPlˊ(cosθ)sinθ P_{\acute{l}} (\cos \theta) \sin \theta and integrating, we have

AlˊRlˊ22lˊ+10πV0(θ)Plˊ(cosθ)sinθdθ.A_{\acute{l}}R^{\acute{l}}\frac{2}{2\acute{l}+1}\int_{0}^{\pi}{V_{0}(\theta)P_{\acute{l}} (\cos{\theta}) \sin{\theta} d{\theta}}.

or
Al=2l+12Rl0πV0(θ)Pl(cosθ)sinθdθ.A_{l}=\frac{2l+1}{2R^{l}} \int_{0}^{\pi}{V_{0}(\theta)P_{l} (\cos{\theta}) \sin{\theta} d{\theta}}.            (3.69)

Equation 3.66 is the solution to our problem, with the coefficients given by Eq. 3.69.
It can be difficult to evaluate integrals of the form 3.69 analytically, and in practice it is often easier to solve Eq. 3.67 “by eyeball.”15^{15} For instance, suppose we are told that the potential on the sphere is

V0(θ)=ksin2(θ/2),V_{0}(\theta) = k \sin^{2}(\theta/2),                 (3.70)

 

where k is a constant. Using the half-angle formula, we rewrite this as

V0(θ)=k2(1cosθ)=k2[P0(cosθ)P1(cosθ)].V_{0}(\theta ) =\frac{ k}{2}(1 − \cos \theta ) = \frac{k}{2}[P_{0}(\cos\theta ) − P_{1}(\cos \theta )].

Putting this into Eq. 3.67, we read off immediately that A0=k/2,A1=k/(2R)A_{0} = k/2, A_{1} = k/(2R),and all other AlA_{l} ’s vanish. Therefore,

V(r,0)=k2[r0P0(cosθ)r1RP1(cosθ)]=k2(1rRcosθ).V(r,0) =\frac{ k}{2}\left[r^{0}P_{0}(\cos\theta)-\frac{r^{1}}{R}P_{1}(\cos{\theta}) \right]=\frac{k}{2}(1-\frac{r}{R}\cos\theta ) .     (3.71)

 

 

Related Answered Questions