Question 12.181E: The R-410A in Problem 12.180E flows through a heat exchanger...

The R-410A in Problem 12.180E flows through a heat exchanger and exits at 280 F, 200 psia. Find the specific heat transfer using Kay’s rule and the generalized charts and compare this to solution found using Table F.9.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Kay’s rule Eq.12.84

\begin{aligned}& P _{ c \text { mix }}=0.5 \times 838+0.5 \times 525=681.5   psia \\& T _{ c \text { mix } }=0.5 \times 632.3+0.5 \times 610.6=621.45   R\end{aligned}

Table F.1:

\begin{aligned}& R =1545.36 / 72.585=21.29   lbf – ft / lbm – R =0.02736   Btu / lbm – R \\& C _{ P  \operatorname{mix}}=\sum c _{ i } C _{ P  i }=0.5 \times 0.196+0.5 \times 0.189=0.1925   Btu / lbm – R\end{aligned}

Reduced properties 1:    P _{ r 1}=\frac{200}{681.5}=0.293, \quad T _{ r1 }=\frac{539.67}{621.45}=0.868

Fig. D.1:      \left( h _{1}^{*}- h _{1}\right)=0.45 \times RT _{ c }=0.45 \times 0.02736 \times 621.45=7.65   Btu / lbm

Reduced properties 2:    P _{ r 2}=\frac{200}{681.5}=0.293, \quad T _{ r 2}=\frac{739.67}{621.45}=1.19

Fig. D.1:        \left( h _{2}^{*}- h _{2}\right)=0.25 \times RT _{ c }=0.25 \times 0.02736 \times 621.45=4.25   Btu / lbm

The energy equation gives

\begin{aligned}{ }_{1} q_{2} &=\left(h_{2}-h_{1}\right)=\left(h_{2}-h_{2}^{*}\right)+\left(h_{2}^{*}-h_{1}^{*}\right)+\left(h_{1}^{*}-h_{1}\right) \\&=-4.25+0.1925(280-80)+7.65 \\&= 4 1 . 9   B t u / l b m  \operatorname{mix}\end{aligned}

Table F.9.2:    q = h _{2}- h _{1}=176.26-126.34= 4 9 . 9 2   Btu / lbm

The main difference is in the value of specific heat, about 0.25 Btu/lbm-R at the avg. T, whereas it is 0.1925 Btu/lbm-R at 77 F.

…………………………………….

Eq.12.84 : \left(P_{c}\right)_{\operatorname{mix}}=\sum_{i} y_{i} P_{c i}, \quad\left(T_{c}\right)_{\operatorname{mix}}=\sum_{i} y_{i} T_{c i}

 

F.1
F.1'
1
D.1

Related Answered Questions