The R-410A in Problem 12.180E flows through a heat exchanger and exits at 280 F, 200 psia. Find the specific heat transfer using Kay’s rule and the generalized charts and compare this to solution found using Table F.9.
The R-410A in Problem 12.180E flows through a heat exchanger and exits at 280 F, 200 psia. Find the specific heat transfer using Kay’s rule and the generalized charts and compare this to solution found using Table F.9.
Kay’s rule Eq.12.84
\begin{aligned}& P _{ c \text { mix }}=0.5 \times 838+0.5 \times 525=681.5 psia \\& T _{ c \text { mix } }=0.5 \times 632.3+0.5 \times 610.6=621.45 R\end{aligned}Table F.1:
\begin{aligned}& R =1545.36 / 72.585=21.29 lbf – ft / lbm – R =0.02736 Btu / lbm – R \\& C _{ P \operatorname{mix}}=\sum c _{ i } C _{ P i }=0.5 \times 0.196+0.5 \times 0.189=0.1925 Btu / lbm – R\end{aligned}Reduced properties 1: P _{ r 1}=\frac{200}{681.5}=0.293, \quad T _{ r1 }=\frac{539.67}{621.45}=0.868
Fig. D.1: \left( h _{1}^{*}- h _{1}\right)=0.45 \times RT _{ c }=0.45 \times 0.02736 \times 621.45=7.65 Btu / lbm
Reduced properties 2: P _{ r 2}=\frac{200}{681.5}=0.293, \quad T _{ r 2}=\frac{739.67}{621.45}=1.19
Fig. D.1: \left( h _{2}^{*}- h _{2}\right)=0.25 \times RT _{ c }=0.25 \times 0.02736 \times 621.45=4.25 Btu / lbm
The energy equation gives
\begin{aligned}{ }_{1} q_{2} &=\left(h_{2}-h_{1}\right)=\left(h_{2}-h_{2}^{*}\right)+\left(h_{2}^{*}-h_{1}^{*}\right)+\left(h_{1}^{*}-h_{1}\right) \\&=-4.25+0.1925(280-80)+7.65 \\&= 4 1 . 9 B t u / l b m \operatorname{mix}\end{aligned}Table F.9.2: q = h _{2}- h _{1}=176.26-126.34= 4 9 . 9 2 Btu / lbm
The main difference is in the value of specific heat, about 0.25 Btu/lbm-R at the avg. T, whereas it is 0.1925 Btu/lbm-R at 77 F.
…………………………………….
Eq.12.84 : \left(P_{c}\right)_{\operatorname{mix}}=\sum_{i} y_{i} P_{c i}, \quad\left(T_{c}\right)_{\operatorname{mix}}=\sum_{i} y_{i} T_{c i}