Question 4.27: The required hydraulic power to be extracted by a reaction t...

The required hydraulic power to be extracted by a reaction turbine is determined to be 800 kW. The design freely available head to be extracted by the turbine is given to be 25 m. The hydraulic power is to be extracted from water at 20^{\circ} C flowing from reservoir 1 though a galvanized iron pipe 150 m in length, as illustrated in Figure EP 4.24. The pipe entrance from reservoir 1 is square-edged, and the draft tube has a conical angle, θ= 9^{\circ} . Assume a Darcy–Weisbach friction factor, f of 0.15; a minor head loss coefficient due to a squared-edged pipe entrance, k= 0.5; and a minor head loss coefficient due to the conical diffuser, k= 0.5. The pressure at point a in the pipe is measured using a piezometer. (a) Determine the design magnitude of the freely available discharge. (b) Determine the design level of headwater in reservoir 1in order to accommodate the design magnitude of the freely available head to be extracted by the turbine, h{_turbine} . (c) Determine the pressure and velocity at point a. (d) Determine the maximum allowable height of the draft tube, z_{b} without causing cavitation. (e) Determine the design pipe size in order to accommodate the design magnitude of the required freely available discharge. (f) Draw the energy grade line and the hydraulic grade line.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the design magnitude of the freely available discharge, Equation 4.187 h_{turbine} = \frac{(P_{t})_{in}}{\gamma Q} = \frac{(P_{t})_{out}/\eta _{turbine}}{\gamma Q} = \frac{wT_{shaft,out}/\eta _{turbine}}{\gamma Q} is applied as follows:

\rho : = 998 \frac{kg}{m^{3}}                           g: = 9.81 \frac{m}{sec^{2}}                           \gamma : = \rho .g = 9.79 \times 10^{3} \frac{kg}{m^{2}s^{2}}
P_{tin}: = 800 kW                  h_{turbine}: = 25 m

Guess value:                           Q: = 2 \frac{m^{3}}{sec}

Given

P_{tin} = \gamma .Q. h_{turbine}
Q: = Find (Q)= 3.269 \frac{m^{3}}{s}

(b)–(e) In order to determine the design level of headwater in reservoir 1 in order to
accommodate the design magnitude of the freely available head to be extracted
by the turbine, h{_turbine} and the pressure and velocity at point a, the energy equation is applied between points 1 and a and between points a and b, assuming the pressure at point b is the vapor pressure of water at 20^{\circ} C . In order to determine the maximum allowable height of the draft tube, Z_{b} without causing cavitation, the energy equation is applied between points b and 2, assuming the pressure at point b is the vapor pressure of water at 20^{\circ} C . And, in order to determine the design pipe size in order to accommodate the design magnitude of the required freely available discharge, the continuity equation is applied between points a and b. Thus, from Table A.2 in Appendix A, for water at 20^{\circ} C , the vapor pressure, p_{v} is 2.34× 10^{3} N/m^{2} abs. However, because the vapor pressure is given in absolute pressure, the corresponding gage pressure is computed by subtracting the atmospheric pressure as follows: p_{gage} = p_{abs} − p_{atm} , where the standard atmospheric pressure is 101.325× 10^{3} N/m^{2} abs.

P_{1}: = 0 \frac{N}{m^{2}}                   V_{1}: = 0 \frac{m}{sec}                   P_{2}: = 0 \frac{N}{m^{2}}                   V_{2}: = 0 \frac{m}{sec}                   Z_{2}: = 0 m
P_{V}: = 2.34 \times 10^{3} \frac{N}{m^{2}} – 101.325 \times 10^{3} \frac{N}{m^{2}} – 9.899 \times 10^{4} \frac{N}{m^{2}}
P_{b}: = P_{V} = – 9.899 \times 10^{4} \frac{N}{m^{2}}

k_{ent}: = 0.5                  k_{diffuser}: = 0.5                  f: = 0.15                  L: = 150 m

Guess value:                  Z_{1}: = 100 m                  P_{a}: = 2 \times 10^{3} \frac{N}{m^{2}}                  V_{a}: = 1 \frac{m}{sec}                   V_{b}: = 2 \frac{m}{sec}
D_{a}: = 0.5 m                  D_{b}: = 0.5 m                   Z_{a}: = 2 m                  Z_{b}: = 2 m
h_{fmaj}: = 1 m                  h_{fent}: = 1 m                  h_{ fdiffuser}: = 1 m

Given

\frac{P_{1}}{\gamma } + Z_{1} + \frac{V^{2}_{1} }{2.g} – h_{fmaj} – h_{fent} = \frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g}
\frac{P_{a}}{\gamma } + Z_{a} + \frac{V^{2}_{a} }{2.g} – h_{turbine} =\frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g}
\frac{P_{b}}{\gamma } + Z_{b} + \frac{V^{2}_{b} }{2.g} – h_{ fdiffuser} – \frac{P_{2}}{\gamma } + Z_{2} + \frac{V^{2}_{2} }{2.g}

h_{fmaj} = f \frac{L}{D_{a}} \frac{V^{2}_{a}}{2.g}                   h_{fent} = k_{ent}\frac{V^{2}_{a}}{2.g}                   h_{ fdiffuser} = k_{diffuser}\frac{V^{2}_{b}}{2.g}

Q = V_{a} \frac{\pi . D^{2}_{a} }{4}                   Q = V_{b} \frac{\pi . D^{2}_{b} }{4}                   Z_{a} = Z_{b}                       D_{a} = D_{b}

\left ( \begin{matrix}Z_{1} \\ P_{a} \\ V_{a} \\ V_{b} \\ D_{a} \\ D_{b} \\ Z_{a} \\ Z_{b} \\ h_{fmaj} \\ h_{fent} \\ h_{ fdiffuser} \end{matrix} \right ) : = Find (Z_{1}, P_{a}, V_{a}, V_{b}, D_{a}, D_{b}, Z_{a}, Z_{b}, h_{fmaj}, h_{fent}, h_{ fdiffuser})

Z_{1}: = 57.405 m                   P_{a}: = 1.458 \times 10^{5} \frac{N}{m^{2}}                  V_{a}: = 4.982 \frac{m}{sec}
V_{b}: = 4.982 \frac{m}{sec}
D_{a}: = 0.914 m                  D_{b}: = 0.914 m                   Z_{a}: = 9.478 m                  Z_{b}: = 9.478 m
h_{fmaj}: = 31.14 m                  h_{fent}: = 0.632 m                  h_{ fdiffuser}: = 0.632 m

(f) The EGL and HGL are illustrated in Figure EP 4.24.

Table A.2
Physical Properties for Water at Standard Sea-Level Atmospheric Pressure as a Function of Temperature
Temperature
(θ)
^{\circ } F
Density
(ρ)
slug/ft^{3}
Specific
Weight
(γ)
Ib/ft^{3}
Absolute
(Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{3}
Kinematic
Viscosity
(ν)
10^{-6} ft^{2}/sec
Surface
Tension
(σ)
lb=ft
Vapor
Pressure
(\rho _{\nu } )
psia
Bulk
Modulus
of Elasticity
(E_{\upsilon } )
psi
32 1.940 62.42 37.46 19.31 0.00518 0.0885 293.000
40 1.940 62.43 32.29 16.64 0.00514 0.1220 294.000
50 1.940 62.41 27.35 14.10 0.00509 0.1780 305.000
60 1.938 62.37 23.59 12.17 0.00504 0.2560 311.000
70 1.936 62.30 20.50 10.59 0.00498 0.3630 320.000
80 1.934 62.22 17.99 9.30 0.00492 0.5070 322.000
90 1.931 62.11 15.95 8.26 0.00486 0.6980 323.000
100 1.927 62.00 14.24 7.39 0.00480 0.9490 327.000
110 1.923 61.86 12.84 6.67 0.00473 1.2750 331.000
120 1.918 61.71 11.68 6.09 0.00467 1.6920 333.333
130 1.913 61.55 10.69 5.58 0.00460 2.2200 334.000
140 1.908 61.38 9.81 5.14 0.00454 2.8900 330.000
150 1.902 61.20 9.05 4.76 0.00447 3.7200 328.000
160 1.896 61.00 8.38 4.42 0.00441 4.7400 326.000
170 1.890 60.80 7.80 4.13 0.00434 5.9900 322.000
180 1.883 60.58 8.26 3.85 0.00427 7.5100 318.000
190 1.876 60.36 6.78 3.62 0.00420 9.3400 313.000
200 1.868 60.12 6.37 3.41 0.00413 11.5200 308.000
212 1.860 59.83 5.93 3.19 0.00404 14.6900 300.000
^{\circ } C kg/m^{3} KN/m^{3} N-sec/m^{2} 10^{-6} m^{2} /sec N/m KN/m^{2}  abs 10^{6} KN/m^{2}
0 999.8 9.805 0.001781 1.785 0.0756 0.6110 2.02
5 1000.0 9.807 0.001518 1.519 0.0749 0.872 2.06
10 999.7 9.804 0.001307 1.306 0.0742 1.230 2.10
15 999.1 9.798 0.001139 1.139 0.0735 1.710 2.14
20 998.2 9.789 0.001002 1.003 0.0725 2.340 2.18
25 997.0 9.777 0.000890 0.893 0.0720 3.170 2.22
30 995.7 9.765 0.000798 0.800 0.0712 4.240 2.25
40 992.2 9.731 0.000653 0.659 0.0696 7.380 2.28
50 988.0 9.690 0.000547 0.553 0.0697 12.330 2.29
60 983.2 9.642 0.000466 0.474 0.0662 19.920 2.28
70 977.8 9.589 0.000404 0.413 0.0644 31.160 2.25
80 971.8 9.530 0.000356 0.364 0.0626 47.340 2.20
90 965.3 9.467 0.000315 0.326 0.0608 70.100 2.14
100 958.4 9.399 0.000282 0.294 0.0589 101.330 2.07

Related Answered Questions