The slider block has the motion shown. Determine the angular velocity and angular acceleration of the wheel at this instant.
The slider block has the motion shown. Determine the angular velocity and angular acceleration of the wheel at this instant.
Rotation About A Fixed Axis. For wheel C, refer to Fig. a.
v_A = \omega_C r_C = \omega_C (0.15) \downarrow \\ \textbf{a}_A = \pmb{\alpha}_C \times \textbf{r}_C – \omega^2_C \textbf{r}_C \\ \begin{aligned} \textbf{a}_A &= (\alpha_C \textbf{k}) \times (-0.15\textbf{i}) – \omega^2_C (-0.15\textbf{i}) \\ &= 0.15 \omega^2_C \textbf{i} – 0.15\alpha_C \textbf{j} \end{aligned}General Plane Motion. The IC for crank AB can be located using \textbf{v}_A and \textbf{v}_B as shown in Fig. b. Here
r_{ A/IC } = 0.3 m \\ r_{ B/IC } = 0.4 mThen the kinematics gives
v_B = \omega_{ AB } r_{ B/IC }; \quad\quad 4 = \omega_{ AB } (0.4) \quad\quad \omega_{ AB } = 10.0 rad/s \curvearrowleft \\ v_A = \omega_{ AB } r_{ A/IC }; \quad\quad \omega_C (0.15) = 10.0(0.3) \quad\quad \omega_C = 20.0 rad/s \curvearrowleftApplying the relative acceleration equation by referring to Fig. c,
\textbf{a}_B = \textbf{a}_A + \pmb{\alpha}_{ AB } \times \textbf{r}_{ B/A } – \omega_{ AB }^2 \textbf{r}_{ B/A } \\ \begin{aligned} 2\textbf{i} = 0.15 (20.0^2)\textbf{i} – 0.15\alpha_C \textbf{j} + (\alpha_{ AB } \textbf{k} &) \times (0.3\textbf{i} – 0.4\textbf{j}) \\ & -10.0^2 (0.3\textbf{i} – 0.4\textbf{j}) \end{aligned} \\ 2\textbf{i} = (0.4\alpha_{ AB } + 30)\textbf{i} + (0.3\alpha_{ AB } – 0.15\alpha_C + 40)\textbf{j}Equating i and j components,
2 = 0.4\alpha_{ AB } + 30; \quad \alpha_{ AB } = -70.0 rad/s^2 = 70.0 rad/s^2 \curvearrowright \\ 0 = 0.3(-70.0) + 0.15\alpha_C + 40; \quad \alpha_C = -126.67 rad/s^2 = 127 rad/s \curvearrowrightThe negative signs indicate that \pmb{\alpha}_C and \pmb{\alpha}_{ AB } are directed in the sense that those shown in Fig. a and c.