Question : The slider block has the motion shown. Determine the angular...

The slider block has the motion shown. Determine the angular velocity and angular acceleration of the wheel at this instant.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Rotation About A Fixed Axis. For wheel C, refer to Fig. a.

v_A = \omega_C r_C = \omega_C (0.15) \downarrow \\ \textbf{a}_A = \pmb{\alpha}_C \times \textbf{r}_C – \omega^2_C \textbf{r}_C \\ \begin{aligned} \textbf{a}_A &= (\alpha_C \textbf{k}) \times (-0.15\textbf{i}) – \omega^2_C (-0.15\textbf{i}) \\ &= 0.15 \omega^2_C \textbf{i} – 0.15\alpha_C \textbf{j} \end{aligned}

General Plane Motion. The IC for crank AB can be located using \textbf{v}_A and \textbf{v}_B as shown in Fig. b. Here

r_{ A/IC } = 0.3 m \\ r_{ B/IC } = 0.4 m

Then the kinematics gives

v_B = \omega_{ AB } r_{ B/IC }; \quad\quad 4 = \omega_{ AB } (0.4) \quad\quad \omega_{ AB } = 10.0 rad/s \curvearrowleft \\ v_A = \omega_{ AB } r_{ A/IC }; \quad\quad \omega_C (0.15) = 10.0(0.3) \quad\quad \omega_C = 20.0 rad/s \curvearrowleft

Applying the relative acceleration equation by referring to Fig. c,

\textbf{a}_B = \textbf{a}_A + \pmb{\alpha}_{ AB } \times \textbf{r}_{ B/A } – \omega_{ AB }^2 \textbf{r}_{ B/A } \\ \begin{aligned} 2\textbf{i} = 0.15 (20.0^2)\textbf{i} – 0.15\alpha_C \textbf{j} + (\alpha_{ AB } \textbf{k} &) \times (0.3\textbf{i} – 0.4\textbf{j}) \\ & -10.0^2 (0.3\textbf{i} – 0.4\textbf{j}) \end{aligned} \\ 2\textbf{i} = (0.4\alpha_{ AB } + 30)\textbf{i} + (0.3\alpha_{ AB } – 0.15\alpha_C + 40)\textbf{j}

Equating i and j components,

2 = 0.4\alpha_{ AB } + 30; \quad \alpha_{ AB } = -70.0 rad/s^2 = 70.0 rad/s^2 \curvearrowright \\ 0 = 0.3(-70.0) + 0.15\alpha_C + 40; \quad \alpha_C = -126.67 rad/s^2 = 127 rad/s \curvearrowright

The negative signs indicate that \pmb{\alpha}_C and \pmb{\alpha}_{ AB } are directed in the sense that those shown in Fig. a and c.

Screenshot_2020-11-19 Engineering Mechanics Dynamics (14th Edition) Instructors Solutions Manual by Russell C Hibbeler (z-l[...](22)
Screenshot_2020-11-19 Engineering Mechanics Dynamics (14th Edition) Instructors Solutions Manual by Russell C Hibbeler (z-l[...](23)