Question 8.18: The source in Figure 8-57 has an internal source resistance ...

The source in Figure 8-57 has an internal source resistance of 75 Ω. Determine the load power for each of the following values of load resistance:
(a) 0 Ω        (b) 25 Ω        (c) 50 Ω          (d) 75 Ω         (e) 100 Ω            (f) 125 Ω
Draw a graph showing the load power versus the load resistance.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use Ohm’s law (I=V/R ) and the power formula (P= I^{2}R) to find the load powerP_{L},for each value of load resistance.

(a) For R_{L}= 0 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{75 \ \Omega + 0 \ \Omega } = 133 \ mA

 

P_{L}= I^{2}R_{L}= (133 \ mA)^{2} (0 \ \Omega )= 0 \ mW

(b) For R_{L}= 25 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{75 \ \Omega + 25 \ \Omega } = 100 \ mA

 

P_{L}= I^{2}R_{L}= (100 \ mA)^{2} (25 \ \Omega )= 250 \ mW

(C) For R_{L}= 50 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{ 125 \ \Omega } = 80 \ mA

 

P_{L}= I^{2}R_{L}= (80 \ mA)^{2} (50 \ \Omega )= 320 \ mW

(d) For R_{L}= 75 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{ 150 \ \Omega } = 66.7 \ mA

 

P_{L}= I^{2}R_{L}= (66.7 \ mA)^{2} (75 \ \Omega )= 334\ mW

(e) For R_{L}= 100 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{ 175 \ \Omega } = 57.1 \ mA

 

P_{L}= I^{2}R_{L}= (57.1 \ mA)^{2} (100 \ \Omega )= 326\ mW

(f) For R_{L}= 125 Ω.

I= \frac{V_{S}}{R_{S}+ R_{L}} = \frac{10 \ V}{ 200 \ \Omega } = 50 \ mA

 

P_{L}= I^{2}R_{L}= (50 \ mA)^{2} (125 \ \Omega )= 313\ mW

Notice that the load power is greatest when R_{L}= 75  Ω, which is the same as the internal source resistance. When the load resistance is less than or greater than this value, the power drops off , as the curve in Figure 8-58 graphically illustrates.

Curve showing that the load power is maximum when R_{L} = R_{S}

Screenshot (548)

Related Answered Questions

Use Equations 8-4 : R_{A}= \frac{R_{1}R_{2}...
Step 1 : Find the current through R_{2}[/la...
Step 1: Find the current through the 100 Ω resisto...
Step 1: Find the current through R_{3}[/lat...