Question 11.33: The spontaneous emission rate for the 21-cm hyperfine line i...

The spontaneous emission rate for the 21-cm hyperfine line in hydrogen (Section 7.5) can be obtained from Equation 11.63, except that this is a magnetic dipole transition, not an electric one:

A=\frac{\omega_{0}^{3}| \rho |^{2}}{3 \pi \epsilon_{0} \hbar c^{3}}          (11.63).

\wp \rightarrow \frac{1}{c} M =\frac{1}{c}\left\langle 1\left|\left(\mu_{e}+\mu_{p}\right)\right| 0\right\rangle ,

where

\mu_{e}=-\frac{e}{m_{e}} S _{e}, \quad \mu _{p}=\frac{5.59 e}{2 m_{p}} S _{p} .

are the magnetic moments of the electron and proton (Equation 7.89), and |0\rangle , |1\rangle are the singlet and triplet configurations (Equations 4.175 and 4.176). Because m_{p} \gg m_{e} , the proton contribution is negligible, so

\mu_{p}=\frac{g_{p} e}{2 m_{p}} S _{p}, \quad \mu _{e}=-\frac{e}{m_{e}} S _{e}             (7.89).

\left\{\begin{array}{l} |11\rangle=|\uparrow \uparrow\rangle \\ |10\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\ |1-1\rangle=|\downarrow \downarrow\rangle \end{array}\right\} \quad s=1 \text { (triplet) }               (4.175).

\left\{|00\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)\right\} \quad s=0 \text { (singlet) }                   (4.176).

A=\frac{\omega_{0}^{3} e^{2}}{3 \pi \epsilon_{0} \hbar c^{5} m_{e}^{2}}\left|\left\langle 1\left| S _{e}\right| 0\right\rangle\right|^{2} .

Work out \left|\left\langle 1\left| S _{e}\right| 0\right\rangle\right|^{2} (use whichever triplet state you like). Put in the actual numbers, to determine the transition rate and the lifetime of the triplet state.
Answer: 1.1 \times 10^{7} \text { years. } .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Choosing the triplet configuration  |1\rangle=\left|\uparrow_{e} \uparrow_{p}\right\rangle we have

\left\langle 1\left| S _{e}\right| 0\right\rangle=\frac{1}{\sqrt{2}}\left[\left\langle\uparrow_{e} \uparrow_{p}\left| S _{e}\right| \uparrow_{e} \downarrow_{p}\right\rangle-\left\langle\uparrow_{e} \uparrow_{p}| S | \downarrow_{e} \uparrow_{p}\right\rangle\right] .

Since S_e doesn’t effect the spin of the proton the first term vanishes and we have

\left\langle 1\left| S _{e}\right| 0\right\rangle=-\frac{1}{\sqrt{2}}\left\langle\uparrow_{e}\left| S _{e}\right| \downarrow_{e}\right\rangle .

=-\frac{1}{\sqrt{2}}\left(\begin{array}{c} \frac{1}{2}\left\langle\uparrow_{e}\left|S_{e}^{+}+S_{e}^{-}\right| \downarrow_{e}\right\rangle \\ \frac{1}{2 i}\left\langle\uparrow_{e}\left|S_{e}^{+}-S_{e}^{-}\right| \downarrow e\right\rangle \\ \left\langle\uparrow_{e}\left|S_{e}^{z}\right| \downarrow_{e}\right\rangle \end{array}\right) .

=\frac{i \hbar}{2 \sqrt{2}}\left(\begin{array}{l} i \\ 1 \\ 0 \end{array}\right) .

We can then compute

\left|\left\langle 1\left| S _{e}\right| 0\right\rangle\right|^{2}=\frac{\hbar^{2}}{8}(1+1)=\frac{\hbar^{2}}{4} .

Using the expression given in the problem we then have

A=\frac{\omega_{0}^{3} e^{2}}{3 \pi \epsilon_{0} \hbar c^{5} m_{e}^{2}} \frac{\hbar^{2}}{4} .

The frequency ω_0 is that of the 21cm line transition (see Equation 7.97),

\Delta E=\frac{4 g_{p} \hbar^{4}}{3 m_{p} m_{e}^{2} c^{2} a^{4}}=5.88 \times 10^{-6} eV                    (7.97).

\omega_{0}=\frac{\Delta E}{\hbar}=\frac{4 g_{p} \hbar^{3}}{3 m_{p} m_{e}^{2} c^{2} a^{4}} ,

giving

\tau=\frac{1}{A}=\frac{81}{64} \frac{1}{\alpha^{13}} \frac{1}{g_{p}^{3}}\left(\frac{m_{p}}{m_{e}}\right)^{3} \frac{\hbar}{m_{e} c^{2}}=1.1 \times 10^{7} yr .

Related Answered Questions