The spontaneous emission rate for the 21-cm hyperfine line in hydrogen (Section 7.5) can be obtained from Equation 11.63, except that this is a magnetic dipole transition, not an electric one:
A=\frac{\omega_{0}^{3}| \rho |^{2}}{3 \pi \epsilon_{0} \hbar c^{3}} (11.63).
\wp \rightarrow \frac{1}{c} M =\frac{1}{c}\left\langle 1\left|\left(\mu_{e}+\mu_{p}\right)\right| 0\right\rangle ,
where
\mu_{e}=-\frac{e}{m_{e}} S _{e}, \quad \mu _{p}=\frac{5.59 e}{2 m_{p}} S _{p} .
are the magnetic moments of the electron and proton (Equation 7.89), and |0\rangle , |1\rangle are the singlet and triplet configurations (Equations 4.175 and 4.176). Because m_{p} \gg m_{e} , the proton contribution is negligible, so
\mu_{p}=\frac{g_{p} e}{2 m_{p}} S _{p}, \quad \mu _{e}=-\frac{e}{m_{e}} S _{e} (7.89).
\left\{\begin{array}{l} |11\rangle=|\uparrow \uparrow\rangle \\ |10\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\ |1-1\rangle=|\downarrow \downarrow\rangle \end{array}\right\} \quad s=1 \text { (triplet) } (4.175).
\left\{|00\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)\right\} \quad s=0 \text { (singlet) } (4.176).
A=\frac{\omega_{0}^{3} e^{2}}{3 \pi \epsilon_{0} \hbar c^{5} m_{e}^{2}}\left|\left\langle 1\left| S _{e}\right| 0\right\rangle\right|^{2} .
Work out \left|\left\langle 1\left| S _{e}\right| 0\right\rangle\right|^{2} (use whichever triplet state you like). Put in the actual numbers, to determine the transition rate and the lifetime of the triplet state.
Answer: 1.1 \times 10^{7} \text { years. } .