Question 9.39: The standstill impedances per phase of the inner and outer c...

The standstill impedances per phase of the inner and outer cage of a double cage induction motor is given below:

Z_{2i} = (0.5 + j2)  \Omega ; Z_{2o} = \left(2 + j0.5\right)  \Omega

 

Determine the slip at which the two cages develop equal torques.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let S be the slip at which the two cages develop equal torques.

During running condition,

Z_{2i} = \sqrt{\left(\frac{0.5}{S} \right)^{2} + \left(2\right)^{2}}  and  Z_{2o} = \sqrt{\left(\frac{2}{S} \right)^{2} + \left(0.5\right)^{2}}

 

Now, \frac{I_{2i} }{I_{2o} } = \frac{Z_{2o} }{ Z_{2i}}

or \left\lgroup\frac{I_{2i} }{I_{2o} }\right\rgroup ^{2} = \left\lgroup\frac{Z_{2o} }{ Z_{2i}}\right\rgroup ^{2} = \frac{\left(2/ S\right)^{2} + \left(0.5\right)^{2} }{\left(0.5/ S\right)^{2} + \left(2\right)^{2}}

Power developed in the two cages

P_{2i} = I^{2}_{2i} \times \frac{R_{2i}}{S} = I^{2}_{2i} \times \frac{0.5}{S} ; P_{2o}=I^{2}_{2o} \times \frac{R_{2o}}{S} = I^{2}_{2o} \times \frac{2}{S}

 

T_{2i} \propto P_{2i}  and  T_{2o} \propto P_{2}

 

and T_{2i} = T_{2o}

or \frac{T_{2i}}{T_{2o}} = 1

or \frac{\left[\left(2/ S\right)^{2} + \left(0.5\right)^{2} \right] \left(0.5 / S\right) }{\left[\left(0.5/ S\right)^{2} + \left(2\right)^{2} \right] \left(2 / S\right)} = 1    or  \frac{\left\lgroup\frac{4}{S^{2}} + 0.25 \right\rgroup \times 0.5}{\left\lgroup\frac{0.25}{S^{2}}+ 4 \right\rgroup \times 2} = 1

or \frac{4}{S^{2}} + 0.25 = \left\lgroup\frac{0.25}{S^{2}}+ 4 \right\rgroup 4    or  \frac{4}{S^{2}} + 0.25 = \frac{1}{S^{2}}+ 16

or \frac{3}{S^{2}} = 15.75    or  S = \sqrt{\frac{3}{15.75}} = 0.4364 = \mathbf{43.64\%}

Related Answered Questions