The standstill impedances per phase of the inner and outer cage of a double cage induction motor is given below:
Z_{2i} = (0.5 + j2) \Omega ; Z_{2o} = \left(2 + j0.5\right) \Omega
Determine the slip at which the two cages develop equal torques.
The standstill impedances per phase of the inner and outer cage of a double cage induction motor is given below:
Z_{2i} = (0.5 + j2) \Omega ; Z_{2o} = \left(2 + j0.5\right) \Omega
Determine the slip at which the two cages develop equal torques.
Let S be the slip at which the two cages develop equal torques.
During running condition,
Z_{2i} = \sqrt{\left(\frac{0.5}{S} \right)^{2} + \left(2\right)^{2}} and Z_{2o} = \sqrt{\left(\frac{2}{S} \right)^{2} + \left(0.5\right)^{2}}
Now, \frac{I_{2i} }{I_{2o} } = \frac{Z_{2o} }{ Z_{2i}}
or \left\lgroup\frac{I_{2i} }{I_{2o} }\right\rgroup ^{2} = \left\lgroup\frac{Z_{2o} }{ Z_{2i}}\right\rgroup ^{2} = \frac{\left(2/ S\right)^{2} + \left(0.5\right)^{2} }{\left(0.5/ S\right)^{2} + \left(2\right)^{2}}
Power developed in the two cages
P_{2i} = I^{2}_{2i} \times \frac{R_{2i}}{S} = I^{2}_{2i} \times \frac{0.5}{S} ; P_{2o}=I^{2}_{2o} \times \frac{R_{2o}}{S} = I^{2}_{2o} \times \frac{2}{S}T_{2i} \propto P_{2i} and T_{2o} \propto P_{2}
and T_{2i} = T_{2o}
or \frac{T_{2i}}{T_{2o}} = 1
or \frac{\left[\left(2/ S\right)^{2} + \left(0.5\right)^{2} \right] \left(0.5 / S\right) }{\left[\left(0.5/ S\right)^{2} + \left(2\right)^{2} \right] \left(2 / S\right)} = 1 or \frac{\left\lgroup\frac{4}{S^{2}} + 0.25 \right\rgroup \times 0.5}{\left\lgroup\frac{0.25}{S^{2}}+ 4 \right\rgroup \times 2} = 1
or \frac{4}{S^{2}} + 0.25 = \left\lgroup\frac{0.25}{S^{2}}+ 4 \right\rgroup 4 or \frac{4}{S^{2}} + 0.25 = \frac{1}{S^{2}}+ 16
or \frac{3}{S^{2}} = 15.75 or S = \sqrt{\frac{3}{15.75}} = 0.4364 = \mathbf{43.64\%}