Question 9.38: The standstill impedances per phase of the inner cage and ou...

The standstill impedances per phase of the inner cage and outer cage of a 3-phase, 400 V, 50 Hz, double squirrel cage induction motor referred to stator side are given as;

\overline{Z}_{2i} = \left(0.6 + j5\right)  \Omega ; \overline{Z}_{2o} = \left(3 + j1\right)  \Omega

 

Determine the ratio of the currents and torques of the two cages (i) at stand-still (ii) at a slip of 4%. Neglect magnetising current.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The simplified equivalent circuit of the motor as per data is shown in Fig. 9.59.

( i) At standstill;  slip, S = 1

Impedance of inner-cage referred to stator side;

Z^{\prime }_{2i} = \sqrt{\left(0.6 \right)^{2} + \left(5\right)^{2}} = 5.036  \Omega

 

Let the voltage impressed across the cage be E_{1}, then

I^{\prime }_{2i} =\frac{E_{1}}{5.036}  ampere

 

Power input to inner-cage,

P^{\prime }_{2i} = \left(I^{\prime }_{2i}\right)^{2} R^{\prime }_{2i} = \left\lgroup\frac{E_{1}}{5.036}\right\rgroup ^{2} \times 0.6 = 0.02366  E^{2}

 

Impedance of outer-cage referred to stator side;

Z^{\prime }_{2o} = \sqrt{\left(3 \right)^{2} + \left(1\right)^{2}} = 3.162  \Omega

 

I^{\prime }_{2o} =\frac{E_{1}}{3.162} 

 

Power input to outer-cage,

P^{\prime }_{2o} = \left(I^{\prime }_{2o}\right)^{2} R^{\prime }_{2o} = \left\lgroup\frac{E_{1}}{3.162}\right\rgroup ^{2} \times 3 = 0.3  E^{2}

 

Ratio of outer to inner cage current,

\frac{I^{\prime }_{2o}}{I^{\prime }_{2i}} = \frac{E_{1}}{3.162} \times \frac{5.036}{E_{1}} = \mathbf{1.593}

 

Ratio of outer to inner-cage torques or power

\frac{T_{2o}}{T_{2i}} =\frac{P^{\prime }_{2o}}{P^{\prime }_{2i}} = \frac{0.3 E^{2}_{1}}{0.02366 E^{2}_{1}} = \mathbf{12.68}

 

( ii) At a slip of 4%;  Slip, S = 0.04

Impedance of inner-cage referred to stator side;

Z^{\prime }_{2i} = \sqrt{\left\lgroup\frac{R^{\prime }_{2i}}{S} \right\rgroup^{2} + \left(X_{2i}\right)^{2} } = \sqrt{\left\lgroup\frac{0.6}{0.04} \right\rgroup^{2} + \left(5\right)^{2} } = 15.81  \Omega

 

Current, I^{\prime }_{2i} = \frac{E_{1}}{Z_{2i}} = \frac{E_{1}}{15.81}  ampere

Power input, P^{\prime }_{2i} = \left(I^{\prime }_{2i}\right)^{2} \times \frac{R^{\prime }_{2i}}{S} = \left\lgroup \frac{E_{1}}{15.8}\right\rgroup ^{2} \times \frac{0.6}{0.04} = 0.06 E^{2}_{1}

Impedance of outer-cage referred to stator side;

Z^{\prime }_{2i} = \sqrt{\left\lgroup\frac{R^{\prime }_{2o}}{S} \right\rgroup^{2} + \left(X_{2o}\right)^{2} } = \sqrt{\left\lgroup\frac{3}{0.04} \right\rgroup^{2} + \left(1\right)^{2} } = 75  \Omega

 

Current, I^{\prime }_{2o} = \frac{E_{1}}{Z_{2o}} = \frac{E_{1}}{75}  ampere

Power input to outer-cage,

P^{\prime }_{2o} = \left(I^{\prime }_{2o}\right)^{2} \times\frac{ R^{\prime }_{2o}}{S} = \left\lgroup\frac{E_{1}}{75}\right\rgroup ^{2} \times \frac{3}{0.04} = 0.01333  E^{2}_{1}

 

Ratio of outer to inner-cage current,

\frac{I^{\prime }_{2o}}{I^{\prime }_{2i}} = \frac{E_{1}}{75} \times \frac{15.81}{E_{1}} = \mathbf{0.2108}

 

Ratio of outer to inner-cage torques or power

\frac{T^{\prime }_{2o}}{T^{\prime }_{2i}} =\frac{P^{\prime }_{2o}}{P^{\prime }_{2i}} = \frac{0.01333 E^{2}_{1}}{0.06 E^{2}_{1}} = \mathbf{0.222}

 

Conclusion: During starting major part of the power is developed by the outer-cage but during running condition major power is developed by the inner-cage.

9.59

Related Answered Questions