Question 13.35: The strain components εx, εy, and γxy are given for a point ...

The strain components εx,εy, and γxy\varepsilon_{x}, \varepsilon_{y} \text {, and } \gamma_{x y} are given for a point in a body subjected to plane strain. Using Mohr’s circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle θp\theta_{p}, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.
εx=475 μεεy=685 μεγxy=150 μrad\varepsilon_{x}=475  \mu \varepsilon \quad \varepsilon_{y}=685  \mu \varepsilon \quad \gamma_{x y}=-150  \mu rad

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The basic Mohr’s circle is shown.

C=(475 μ)+(685 μ)2=580 μεR=(105 μ)2+(75 μ)2=129.0349 με\begin{aligned}&C=\frac{(475  \mu)+(685  \mu)}{2}=580  \mu \varepsilon \\&R=\sqrt{(-105  \mu)^{2}+(75  \mu)^{2}}=129.0349  \mu \varepsilon\end{aligned}

 

εp1=C+R=580 με+129.0349 με=709 μεεp2=CR=580 με129.0349 με=451 μεγmax=2R=709 μrad\begin{aligned}\varepsilon_{p 1} &=C+R=580  \mu \varepsilon+129.0349  \mu \varepsilon=709  \mu \varepsilon \\\varepsilon_{p 2} &=C-R=580  \mu \varepsilon-129.0349  \mu \varepsilon=451  \mu \varepsilon \\\gamma_{\max } &=2 R=709  \mu rad\end{aligned}

 

The magnitude of the angle 2θp2 \theta_{p} between point x and point 2 (i.e., the principal plane associated with εp2\varepsilon_{p 2}) is found from:

tan2θp=150 μ(475 μ)(685 μ)=150 μ210 μ=0.714292θp=35.5377 thus, θp=17.77\tan 2 \theta_{p}=\frac{150  \mu}{|(475  \mu)-(685  \mu)|}=\frac{150  \mu}{210  \mu}=0.71429 \quad \therefore 2 \theta_{p}=35.5377^{\circ} \quad \text { thus, } \theta_{p}=17.77^{\circ}

By inspection, the angle θp\theta_{p} from point x to point 2 is turned counterclockwise.

Since both εp1 and εp2\varepsilon_{p 1} \text { and } \varepsilon_{p 2} are positive, the absolute maximum shear strain is greater than the maximum in-plane shear strain:

γabsmax=εp1εp3=709.0349 μ(0 μ)=709 μrad\gamma_{ abs \max }=\varepsilon_{p 1}-\varepsilon_{p 3}=709.0349  \mu-(0  \mu)=709  \mu rad

A sketch of the principal strain deformations and the maximum in-plane shear strain distortions is shown below.

 

 

 

Related Answered Questions