Question 13.37: The strain components εx, εy, and γxy are given for a point ...

The strain components εx,εy, and γxy\varepsilon_{x}, \varepsilon_{y}, \text { and } \gamma_{x y} are given for a point in a body subjected to plane strain. Using Mohr’s circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle θp\theta_{p}, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.
εx=0 μεεy=320 μεγxy=260 μrad\varepsilon_{x}=0  \mu \varepsilon \quad \varepsilon_{y}=320  \mu \varepsilon \quad \gamma_{x y}=260  \mu rad

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The basic Mohr’s circle is shown.

C=(0 μ)+(320 μ)2=160 μεR=(160 μ)2+(130 μ)2=206.1553 με\begin{aligned}&C=\frac{(0  \mu)+(320  \mu)}{2}=160  \mu \varepsilon \\&R=\sqrt{(-160  \mu)^{2}+(130  \mu)^{2}}=206.1553  \mu \varepsilon\end{aligned}

 

εp1=C+R=160 με+206.1553 με=366 μεεp2=CR=160 με206.1553 με=46.2 μεγmax=2R=412 μrad\begin{aligned}\varepsilon_{p 1} &=C+R=160  \mu \varepsilon+206.1553  \mu \varepsilon=366  \mu \varepsilon \\\varepsilon_{p 2} &=C-R=160  \mu \varepsilon-206.1553  \mu \varepsilon=-46.2  \mu \varepsilon \\\gamma_{\max } &=2 R=412  \mu rad\end{aligned}

 

The magnitude of the angle 2θp2 \theta_{p} between point x and point 2 (i.e., the principal plane associated with εp2\varepsilon_{p 2}) is found from:

tan2θp=260 μ(0 μ)(320 μ)=260 μ320 μ=0.812502θp=39.0939 thus, θp=19.55\tan 2 \theta_{p}=\frac{260  \mu}{|(0  \mu)-(-320  \mu)|}=\frac{260  \mu}{320  \mu}=0.81250 \quad \therefore 2 \theta_{p}=39.0939^{\circ} \quad \text { thus, } \theta_{p}=19.55^{\circ}

By inspection, the angle θp\theta_{p} from point x to point 2 is turned clockwise.

Since εp1\varepsilon_{p 1} is positive and εp2\varepsilon_{p 2} is negative, the absolute maximum shear strain is the maximum in-plane shear strain:

γabsmax=γmax=412 μrad\gamma_{ abs \max }=\gamma_{\max }=412  \mu rad

A sketch of the principal strain deformations and the maximum in-plane shear strain distortions is shown below.

 

 

 

 

Related Answered Questions