Question 13.39: The strain rosette shown in the figure was used to obtain no...

The strain rosette shown in the figure was used to obtain normal strain data at a point on the free surface of a machine part.
(a) Determine the strain components \varepsilon_{x}, \varepsilon_{y}, \text { and } \gamma_{x y} at the point.
(b) Determine the principal strains and the maximum in-plane shear strain at the point.
(c) Draw a sketch showing the angle \theta_{p}, the principal strain deformations, and the maximum in-plane shear strain distortions.
(d) Determine the magnitude of the absolute maximum shear strain.
\varepsilon_{a}=410  \mu \varepsilon, \quad \varepsilon_{b}=-540  \mu \varepsilon, \quad \varepsilon_{c}=-330  \mu \varepsilon, \quad v=0.30

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Write three normal strain transformation equations [Eq. (13.3)], one for each strain gage, where \varepsilon_{n} is the measured normal strain. In each equation, the angle θ associated with each strain gage will be referenced from the positive x axis.

\begin{aligned}&410 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(0^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(0^{\circ}\right)+\gamma_{x y} \sin \left(0^{\circ}\right) \cos \left(0^{\circ}\right)                      (a)\\&-540 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(45^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(45^{\circ}\right)+\gamma_{x y} \sin \left(45^{\circ}\right) \cos \left(45^{\circ}\right)                 (b)\\&-330 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(90^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(90^{\circ}\right)+\gamma_{x y} \sin \left(90^{\circ}\right) \cos \left(90^{\circ}\right)             (c)\end{aligned}

From Eq. (a):

\varepsilon_{x}=410  \mu \varepsilon

and from Eq. (c):

\varepsilon_{y}=-330  \mu \varepsilon

Using these two results, solve Eq. (b) to find \gamma_{x y}:

\begin{aligned}-540 \mu \varepsilon &=(410  \mu \varepsilon) \cos ^{2}\left(45^{\circ}\right)+(-330  \mu \varepsilon) \sin ^{2}\left(45^{\circ}\right)+\gamma_{x y} \sin \left(45^{\circ}\right) \cos \left(45^{\circ}\right) \\& \therefore \gamma_{x y}=-1,160  \mu rad\end{aligned}

 

(b) Using these results, the principal strain magnitudes can be computed from Eq. (13.10):

\begin{aligned}\varepsilon_{p 1, p 2} &=\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}} \\&=\frac{(410  \mu)+(-330  \mu)}{2} \pm \sqrt{\left(\frac{(410  \mu)-(-330  \mu)}{2}\right)^{2}+\left(\frac{-1,160  \mu}{2}\right)^{2}} \\&=40  \mu \pm 687.9680  \mu\end{aligned}

 

\begin{aligned}&\varepsilon_{p 1}=728  \mu \varepsilon \text {    and    } \varepsilon_{p 2}=-648  \mu \varepsilon \\&\gamma_{\max }=1,376  \mu rad \quad \text { (maximum in-plane shear strain) }\end{aligned}

 

\begin{aligned}\tan 2 \theta_{p} &=\frac{\gamma_{x y}}{\left(\varepsilon_{x}-\varepsilon_{y}\right)}=\frac{-1,160  \mu}{[(410  \mu)-(-330  \mu)]}=\frac{-1,160  \mu}{740  \mu}=-1.5676 \\&\left.\therefore \theta_{p}=-28.7^{\circ} \quad \text { (clockwise from the } x \text { axis to the direction of } \varepsilon_{p 1}\right)\end{aligned}

 

(c) The principal strain deformations and the maximum in-plane shear strain distortions are shown on the sketch below.

 

(d) The problem states that the strain readings were obtained from the free surface of a machine part.
From this statement, we can conclude that a state of plane stress exists. For plane stress, the third principal strain \varepsilon_{2}=\varepsilon_{p 3} is not equal to zero. The normal strain in the z direction can be computed from Eq. 13.15:

\varepsilon_{z}=-\frac{v}{1-v}\left(\varepsilon_{x}+\varepsilon_{y}\right)=-\frac{0.30}{1-0.30}[(410  \mu)+(-330  \mu)]=-34.2857  \mu \varepsilon

Since \varepsilon_{p 1} is positive and \varepsilon_{p 2} is negative, the absolute maximum shear strain is the maximum in-plane shear strain:

\gamma_{ abs \max }=\gamma_{\max }=1,376  \mu rad

 

 

 

 

Related Answered Questions