The stress-strain diagram of the material of a column can be approximated as shown. Plot P / A vs. K L / r for the column.
Tangent Moduli. From the stress – strain diagram,
The stress-strain diagram of the material of a column can be approximated as shown. Plot P / A vs. K L / r for the column.
Tangent Moduli. From the stress – strain diagram,
Critical Stress. Applying Engesser’s equation,
\sigma_{c r}=\frac{P}{A}=\frac{\pi^{2} E_{t}}{\left(\frac{K L}{r}\right)^{2}} \quad(1)If E_{t}=\left(E_{t}\right)_{1}=200 GPa, Eq. (1) becomes
\frac{P}{A}=\frac{\pi^{2}\left[200\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}}=\frac{1.974\left(10^{6}\right)}{\left(\frac{K L}{r}\right)^{2}} MPaWhen \sigma_{ cr }=\frac{P}{A}=\sigma_{Y}=200 MPa, this equation becomes
200\left(10^{6}\right)=\frac{\pi^{2}\left[200\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}} \\\frac{K L}{r}=99.346=99.3If E_{t}=\left(E_{t}\right)_{2}=50 GPa, Eq. (1) becomes
\frac{P}{A}=\frac{\pi^{2}\left[50\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}}=\frac{0.4935\left(10^{6}\right)}{\left(\frac{K L}{r}\right)^{2}} MPawhen \sigma_{ cr }=\frac{P}{A}=\sigma_{ Y }=200 MPa, this equation gives
200\left(10^{6}\right)=\frac{\pi^{2}\left[50\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}} \\\frac{K L}{r}=49.67=49.7
Using these results, the graphs of \frac{P}{A} \text { vs. } \frac{K L}{r} \text { as shown in Fig. } a \text { can be plotted. }