Question 15.83: The stresses on the surface of a machine component are shown...

The stresses on the surface of a machine component are shown in Figure P15.83. The ultimate failure strengths for this material are 200 MPa in tension and 600 MPa in compression. Use the Mohr failure criterion to determine whether this component is safe for the state of stress shown. Support your answer with appropriate documentation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Principal stresses:

σp1,p2=(60 MPa)+(240 MPa)2±((60 MPa)(240 MPa)2)2+(80 MPa)2=90 MPa±170 MPa\begin{aligned}\sigma_{p 1, p 2} &=\frac{(60  MPa )+(-240  MPa )}{2} \pm \sqrt{\left(\frac{(60  MPa )-(-240  MPa )}{2}\right)^{2}+(-80  MPa )^{2}} \\&=-90  MPa \pm 170  MPa\end{aligned}

therefore,               σp1=80 MPa\sigma_{p 1}=80  MPa               and                 σp2=260 MPa\sigma_{p 2}=-260  MPa

Mohr failure criterion:
If σp1\sigma_{p 1} is positive and σp2\sigma_{p 2} is negative, then failure will occur if the following interaction equation is greater than or equal to 1:

σp1σUTσp2σUC1.\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} \geq 1 .

For the principal stresses existing in the component:

σp1σUTσp2σUC=80 MPa200 MPa(260 MPa)600 MPa=0.4(0.4333)=0.8331    O.K.\begin{aligned}\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} &=\frac{80  MPa }{200  MPa }-\frac{(-260  MPa )}{600  MPa } \\&=0.4-(-0.4333) \\&=0.833 \leq 1 \quad     O . K.\end{aligned}

Therefore, the component is safe according to the Mohr failure criterion.

The factor of safety corresponding to the Mohr failure criterion is:

FS=10.8333=1.200FS =\frac{1}{0.8333}=1.200

 

 

Related Answered Questions