Question 24.11: The symmetric four-ply laminate whose cross-section is shown...

The symmetric four-ply laminate whose cross-section is shown in Fig. 24.14 comprises plies of the same thickness but of two different materials with ply angles of 30^{\circ} and 45^{\circ}. For plies 1 and 4, E_{l}=200000 N / mm ^{2}, E_{t}=15000 N /mm ^{2}, G_{l t}=10000 N / mm ^{2} and ν_{l t}=0.3 . For plies 2 and 3, E_{l}=140000 N / mm ^{2}, E_{t}=10000 N / mm ^{2}, G_{l t}=5000 N /mm ^{2} and ν_{l t}=0.3 . Calculate the equivalent elastic constants for the laminate.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider plies 1 and 4. The minor Poisson’s ratio is found using Eq. (24.14), i.e.,

 

\frac{ν_{t l}}{E_{t}}=\frac{ν_{l t}}{E_{l}}  (24.14)

 

ν_{t l}=\frac{15000}{200000} \times 0.3=0.023

 

As in Example 24.9 the reduced stiffness terms k_{13} and k_{23} are zero. Then, from Eq. (24.17)

 

\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_{l}}{1-ν_{l t} ν_{t l}} & \frac{ν_{t l} E_{l}}{1-ν_{l t} ν_{t l}} &0\\\frac{ν_{l t} E_{t}}{1-ν_{l t} ν_{t l}} & \frac{E_{t}}{1-ν_{l t} ν_{t l}}&0\\0 & 0 & G_{l t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{l}\\\varepsilon_{t}\\\gamma_{l t}\end{array}\right\}  (24.17)

 

k_{11}=200000 /(1-0.3 \times 0.023)=201410 N / mm ^{2}

 

k_{12}=4632 N / mm ^{2}

 

Similarly k_{22}=15106 N / mm ^{2}

 

k_{33}=10000 N / mm ^{2}

 

For plies 1 and 4, \theta=30^{\circ} so that m=\cos 30^{\circ}=0.866 and n=\sin 30^{\circ}=0.5 \text {. } Then from Eq. (24.31) (see Eq. (i) of Example 24.10)

 

\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right.&m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&m^{3}n\left(k_{11}-k_{12}-2k_{33}\right)\\\left.+4k_{33}\right)+n^{4}k_{22}&+\left(m^{4}+n^{4}\right)k_{12}&+mn^{3}\left(k_{12}-k_{22}+2k_{33}\right)\\m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&n^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right. & m n^{3}\left(k_{11}-k_{12}-2 k_{33}\right)\\+\left(m^{4}+n^{4}\right)k_{12}&\left.+4k_{33}\right)+m^{4} k_{22} & +m^{3} n\left(k_{12}-k_{22}+2 k_{33}\right)\\m^{3} n\left(k_{11}-k_{12}-2k_{33}\right)&mn^{3}\left(k_{11}-k_{12}-2k_{33}\right)&m^{2}n^{2}\left(k_{11}+k_{22}-2k_{12}\right.\\+mn^{3}\left(k_{12}+k_{22}+2k_{33}\right)& +m^{3} n\left(k_{12}-k_{22}+2k_{33}\right)&\left.-2k_{33}\right)+\left(m^{4}+n^{4}\right)k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x} \\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\}  (24.31)

 

\bar{k}_{11}=m^{4} k_{11}+m^{2} n^{2}\left(2 k_{12}+4 k_{33}\right)+n^{4} k_{22}  (i)

 

\bar{k}_{11}=123583 N / mm ^{2}

 

\bar{k}_{12}=35908 N / mm ^{2}

 

\bar{k}_{13}=58436 N / mm ^{2}

 

\bar{k}_{22}=30431 N / mm ^{2}

 

\bar{k}_{23}=22232 N / mm ^{2}

 

\bar{k}_{33}=41266 N / mm ^{2}

 

The above procedure is repeated for plies 2 and 3 \left(\theta=45^{\circ}\right) and gives the following results.

 

ν_{t l}=0.021

 

k_{11}=140888 N / mm ^{2}

 

k_{12}=2958 N / mm ^{2}

 

k_{22}=10060 N / mm ^{2}

 

k_{33}=5000 N / mm ^{2}

 

\bar{k}_{11}=44216 N / mm ^{2}

 

\bar{k}_{12}=34216 N / mm ^{2}

 

\bar{k}_{13}=32707 N / mm ^{2}

 

Then  \bar{k}_{22}=44216 N / mm ^{2}

 

\bar{k}_{23}=32707 N / mm ^{2}

 

\bar{k}_{33}=36258 N / mm ^{2}

 

The above results are now combined to produce the A terms in the [A] matrix for the complete laminate. From Eq. (24.45)

 

A_{11}=\sum\limits_{ p =1}^{ N }\left(z_{ p }-z_{ p -1}\right) \bar{k}_{11}  (24.45)

 

A_{11}=2 \times 0.13(123583+44216)=43628 N / mm

 

A_{12}=2 \times 0.13(35908+34216)=18232 N / mm

 

A_{13}=2 \times 0.13(58436+32707)=23697 N / mm

 

A_{22}=2 \times 0.13(30431+44216)=19408 N / mm

 

A_{23}=2 \times 0.13(22232+32707)=14284 N / mm

 

A_{33}=2 \times 0.13(41266+36258)=20156 N / mm

 

Then, from Eq. (24.53)

 

A A=A_{11} A_{22} A_{33}+2 A_{12} A_{23} A_{13}-A_{22} A_{13}^{2}-A_{33} A_{12}^{2}-A_{11} A_{23}{ }^{2}  (24.53)

 

A A=43628 \times 19408 \times 20156+2 \times 18232 \times 14284 \times 23697-19408 \times 23697^{2}-20156 \times 18232^{2} -43628 \times 14284^{2}

 

\text { i.e., } A A=2.91 \times 10^{12}

 

Substituting the above in Eqs. (24.52) gives

 

a_{11}=\left(A_{22} A_{33}-A_{23}^{2}\right) / A A

 

a_{22}=\left(A_{11} A_{33}-A_{13}^{2}\right) / A A

 

a_{33}=\left(A_{11} A_{22}-A_{12}^{2}\right) / A A

 

a_{12}=\left(A_{13} A_{23}-A_{12} A_{33}\right) / A A  (24.52)

 

a_{13}=\left(A_{12} A_{23}-A_{22} A_{13}\right) / A A

 

a_{23}=\left(A_{12} A_{13}-A_{11} A_{23}\right) / A A

 

a_{11}=6.43 \times 10^{-5}

 

a_{22}=10.92 \times 10^{-5}

 

a_{33}=17.67 \times 10^{-5}

 

a_{12}=-0.10 \times 10^{-5}

 

a_{13}=-6.85 \times 10^{-5}

 

a_{23}=-6.57 \times 10^{-5}

 

Now, from Eq. (24.56)

 

E_{x}=\frac{1}{t a_{11}}  (24.56)

 

E_{x}=\frac{1}{4 \times 0.13 \times 6.43 \times 10^{-5}}=29908 N / mm ^{2}

 

From Eq. (24.59)

 

E_{y}=\frac{1}{t a_{22}}  (24.59)

 

E_{y}=\frac{1}{4 \times 0.13 \times 10.92 \times 10^{-5}}=17611 N / mm ^{2}

 

From Eq. (24.62)

 

\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{t a_{33}}=G_{x y}  (24.62)

 

G_{ xy }=\frac{1}{4 \times 0.13 \times 17.67 \times 10^{-5}}=10883 N / mm ^{2}

 

From Eq. (24.57)

 

ν_{x y}=\frac{-\varepsilon_{y}}{\varepsilon_{x}}=\frac{-a_{12}}{a_{11}}  (24.57)

 

ν_{x y}=\frac{-\left(-0.10 \times 10^{-5}\right)}{6.43 \times 10^{-5}}=0.016

 

From Eq. (24.60)

 

ν_{y x}=\frac{-a_{12}}{a_{22}}  (24.60)

 

ν_{y x}=\frac{-\left(-0.10 \times 10^{-5}\right)}{10.92 \times 10^{-5}}=0.009

 

From Eq. (24.58)

 

\frac{\gamma_{x y}}{\varepsilon_{x}}=\frac{a_{13}}{a_{11}}=-m_{x}  (24.58)

 

m_{x}=\frac{-\left(-6.85 \times 10^{-5}\right)}{6.43 \times 10^{-5}}=1.07

 

From Eq. (24.61)

 

m_{ y }=\frac{-a_{23}}{a_{22}}  (24.61)

 

m_{y}=\frac{-\left(6.85 \times 10^{-5}\right)}{10.92 \times 10^{-5}}=0.64

Related Answered Questions