The T-beam is subjected to a shear of V = 150 kN. Determine the amount of this force that is supported by the web B.
The T-beam is subjected to a shear of V = 150 kN. Determine the amount of this force that is supported by the web B.
I= \frac{1}{12}(0.2)\left(0.04^{3}\right)+0.2(0.04)(0.08-0.02)^{2}
+\frac{1}{12}(0.04)\left(0.2^{3}\right)+0.2(0.04)(0.14-0.08)^{2}=85.3333\left(10^{-6}\right) \mathrm{m}^{4}
A^{\prime} =0.04(0.16-y)
\bar{y}^{\prime} =y+\frac{(0.16-y)}{2}=\frac{(0.16+y)}{2}
Q =\bar{y}^{\prime} A^{\prime}=0.02\left(0.0256-y^{2}\right)
\tau =\frac{V Q}{I t}=\frac{150\left(10^{3}\right)(0.02)\left(0.0256-y^{2}\right)}{85.3333\left(10^{-6}\right)(0.04)}=22.5\left(10^{6}\right)-878.9\left(10^{6}\right) y^{2}
V =\int \tau d A, \quad d A=0.04 d y
V =\int_{-0.04}^{0.16}\left(22.5\left(10^{6}\right)-878.9\left(10^{6}\right) y^{2}\right) 0.04 d y
=\int_{-0.04}^{0.16}\left(900\left(10^{3}\right)-35.156\left(10^{6}\right) y^{2}\right) d y
=131250 \mathrm{N}=131 \mathrm{kN}