Question 3.117: The table gives data concerning the shrink fit of two cylind...

The table gives data concerning the shrink fit of two cylinders of differing materials and 3–119 dimensional specification in inches. Elastic constants for different materials may be found in Table A–5. Identify the radial interference δ, then find the interference pressure p, and the tangential normal stress on both sides of the fit surface. If dimensional tolerances are given at fit surfaces, repeat the problem for the highest and lowest stress levels.

Problem
Number
Inner Cylinder Outer Cylinder
Material d _{ i } d _{ 0} Material D _{ i } D _{ 0}
3–116 Steel 0 2.002 Steel 2.000 3.00
3–117 Steel 0 2.002 Cast iron 2.000 3.00
3–118 Steel 0 1.002/1.003 Steel 1.001/1.002 2.00
3–119 Aluminum 0 2.003/2.006 Steel 2.000/2.002 3.00
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table A-5, E_{i}=30  Mpsi , E_{o}=14.5  Mpsi , v_{i}=0.292, v_{o}=0.211 .

r_{i}=0, R=1 \text { in, } r_{o}=1.5 \text { in }

The radial interference is  \delta=\frac{1}{2}(2.002-2.000)=0.001  in

Eq. (3-56),

p=\frac{\delta}{R\left[\frac{1}{E_{o}}\left(\frac{r_{o}^{2}+R^{2}}{r_{o}^{2}-R^{2}}+v_{o}\right)+\frac{1}{E_{i}}\left(\frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}-v_{i}\right)\right]}

 

p=\frac{0.001}{1\left[\frac{1}{14.5\left(10^{6}\right)}\left(\frac{1.5^{2}+1^{2}}{1.5^{2}-1^{2}}+0.211\right)+\frac{1}{30\left(10^{6}\right)}\left(\frac{1^{2}+0^{2}}{1^{2}-0^{2}}-0.292\right)\right]}=4599  psi

 

The tangential stresses at the interface for the inner and outer members are given by Eqs. (3-58) and (3-59), respectively.

\left.\left(\sigma_{t}\right)_{i}\right|_{r=R}=-p \frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}=-(4599) \frac{1^{2}+0^{2}}{1^{2}-0^{2}}=-4599  psi

 

\left.\left(\sigma_{t}\right)_{o}\right|_{r=R}=p \frac{r_{o}^{2}+R^{2}}{r_{o}^{2}-R^{2}}=(4599) \frac{1.5^{2}+1^{2}}{1.5^{2}-1^{2}}=11960  psi

___________________________________________________________________________________________________________

Eq. (3-56) : p=\frac{\delta}{R\left[\frac{1}{E_{o}}\left(\frac{r_{o}^{2}+R^{2}}{r_{o}^{2}-R^{2}}+v_{o}\right)+\frac{1}{E_{i}}\left(\frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}-v_{i}\right)\right]}

Eq. (3-58) : \left.\left(\sigma_{t}\right)_{i}\right|_{r=R}=-p \frac{R^{2}+r_{i}^{2}}{R^{2}-r_{i}^{2}}

Eq. (3-59) : \left.\left(\sigma_{t}\right)_{o}\right|_{r=R}=p \frac{r_{o}^{2}+R^{2}}{r_{o}^{2}-R^{2}}

 

Related Answered Questions