a) The thermal response is written in terms of the temperature T and the volume V as,
δQ = C_V (T, V) dT + L_V (T, V) dV .
The thermal response is written in terms of the temperature T and the pressure p as,
δQ = C_p (T, p) dT + L_p (T, p) dp .
which can be recast in terms of the temperature T and the volume V as,
δQ = C_p (T, p) dT + L_ p (T, p) \biggl(\frac{\partial p (T,V) }{\partial T }dT + \frac{\partial p (T,V) }{\partial V }dV\biggr) = \biggl(C_p (T,p) + L_p (T,p) \frac{\partial p (T,V)}{\partial T} \biggr)dT + L_p (T,p) \frac{\partial p (T,V)}{\partial V} dV .
The identification of the terms multiplying the volume differential dV in the two expressions for the thermal response δQ written in terms of the temperature T and the volume V yields the relation,
L_V (T, V) = L_p (T, p) \frac{∂p (T, V)}{∂V} .
b) The identification of the terms multiplying the temperature differential dT in the two expressions for the thermal response δQ written in terms of the temperature T and the volume V yields the relation,
C_V (T, V) = C_p (T, p) + L_p (T, p) \frac{∂p (T, V)}{∂T} .
Using relation (4.80) for the inverse of a partial derivative, this result can be recast as,
\frac{\partial x (y,z)}{\partial y} = \biggl(\frac{\partial y (z,x) }{\partial x }\biggr)^{-1}
\frac{\partial x (y,z)}{\partial z} = \biggl(\frac{\partial z (x,y) }{\partial x }\biggr)^{-1} . (4.80)
L_p (T, p) = \biggl(C_V (T, V) − C_p (T, p)\biggr) \frac{\partial T (p,V) }{\partial p } .