For the conic helix of Problem 11.95, determine the angle that the osculating plane forms with the y axis.
For the conic helix of Problem 11.95, determine the angle that the osculating plane forms with the y axis.
First note that the vectors v and a lie in the osculating plane.
Now
\mathbf{r}= \left(R t \cos \omega_{n} t\right) \mathbf{i}+c t \mathbf{j}+\left(R t \sin \omega_{n} t\right) \mathbf{k}
Then
\mathbf{v}= \frac{d r}{d t}=R\left(\cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{i}+c \mathbf{j}+R\left(\sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{k}
and
\begin{aligned}\mathbf{a}= & \frac{d \nu}{d t} \\= & R\left(-\omega_{n} \sin \omega_{n} t-\omega_{n} \sin \omega_{n} t-\omega_{n}^{2} t \cos \omega_{n} t\right) \mathbf{i} \\& +R\left(\omega_{n} \cos \omega_{n} t+\omega_{n} \cos \omega_{n} t-\omega_{n}^{2} t \sin \omega_{n} t\right) \mathbf{k} \\= & \omega_{n} R\left[-\left(2 \sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{i}+\left(2 \cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{k}\right]\end{aligned}
It then follows that the vector (\mathbf{v} \times \mathbf{a}) is perpendicular to the osculating plane.
(\mathbf{v}\times\mathbf{a})=\omega_{n}R{\left|\begin{array}{l l l}{\quad\quad\quad\quad\quad\mathbf{i}}&{\mathbf{j}}&{\quad\quad\quad\quad\quad\mathbf{k}}\\ {R(\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)}&{c}&{R(\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)}\\ {-(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)}&{0}&{(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)}\end{array}\right|}
=\omega_{n}R\{c(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t){\bf i}+R[-(\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)
-(\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)]\mathbf{j}+c(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)\mathbf{k}
=\omega_{n}R\biggl[c(2\cos{\omega_{n}t}-\omega_{n}t\sin{\omega_{n}t}){\mathbf{i}-{R}}\biggr(2+\omega_{n}^{2}t^{2}\biggr)\mathbf{j}+c(2\sin{\omega_{n}t}+\omega_{n}t\cos{\omega_{n}t}){\mathbf{k}}\biggr]
The angle \alpha formed by the vector (\mathbf{v} \times \mathbf{a}) and the y axis is found from
\cos \alpha=\frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{j}}{|(\mathbf{v} \times \mathbf{a}) \| \mathbf{j}|}
Where
\begin{aligned}&\quad\quad\quad\quad\quad\quad |\mathbf{j}|=1\\& (\mathbf{v} \times \mathbf{a}) \cdot \mathbf{j}=-\omega_{n} R^{2}\left(2+\omega_{n}^{2} t^{2}\right)\\& \quad\quad |(\mathbf{v} \times \mathbf{a})|=\omega_{n} R\left[c^{2}\left(2 \cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right)^{2}+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right.\\& \quad\quad\quad\quad\left.+c^{2}\left(2 \sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right)^{2}\right]^{1 / 2}\\& \quad\quad =\omega_{n} R\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}\end{aligned}
Then
\begin{aligned}\cos \alpha & =\frac{-\omega_{n} R^{2}\left(2+\omega_{n}^{2} t^{2}\right)}{\omega_{n} R\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}} \\& =\frac{-R\left(2+\omega_{n}^{2} t^{2}\right)}{\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}}\end{aligned}
The angle \beta that the osculating plane forms with y axis (see the above diagram) is equal to
\beta=\alpha-90^{\circ}
Then \quad\cos \alpha=\cos \left(\beta+90^{\circ}\right)=-\sin \beta
-\sin \beta=\frac{-R\left(2+\omega_{n}^{2} t^{2}\right)}{\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}}
Then \quad\tan \beta=\frac{R\left(2+\omega_{n}^{2} t^{2}\right)}{c \sqrt{4+\omega_{n}^{2} t^{2}}}
or \quad\quad\quad\quad\quad\quad\beta=\tan ^{-1}\left[\frac{R\left(2+\omega_{n}^{2} t^{2}\right)}{c \sqrt{4+\omega_{n}^{2} t^{2}}}\right]\blacktriangleleft