Question 10.50: The turning moment diagram for a four-stroke gas engine may ...

The turning moment diagram for a four-stroke gas engine may be assumed for simplicity to be represented by four triangles, the areas of which from the line of zero pressure are as follows: suction stroke =0.45 \times 10^{-3} m ^{2} \text {, compression stroke }=1.7 \times 10^{-3} m ^{2} \text {, expansion stroke }=6.8 \times 10^{-3} m ^{2}  , exhaust stroke 0.65 \times 10^{-3} m ^{3} . Each m² of area represents 3 MN m of energy.
Assuming the resisting torque to be uniform, find the mass of rim of flywheel required to keep the speed between 202 and 198 rpm. The mean radius of the rim is 1.2 m.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given: } N_{\max }=202 rpm , N_{\min }=198 rpm , R=1.2 m .

N_{m}=\left(N_{\max }+N_{\min }\right) / 2=(202+198) / 2=200 rpm .

\text { Coefficient of fluctuation of speed, } C_{s}=\left(N_{\max }-N_{\min }\right) / N_{m} .

= (202 – 198)/200=4/200=0.02.

\omega=2 \pi \times 200 / 60=20.944 rad / s .

The turning moment diagram is shown in Fig.10.36.

\text { Net area, } A=A_{3}-\left(A_{1}+A_{2}+A_{4}\right)=\left[6.8-(0.45+1.7+0.65] \times 10^{-3}\right. .

=4 \times 10^{-3} m ^{2} .

\text { Net work done }=A \times \text { Scale }=4 \times 10^{-3} \times 3 \times 10^{6}=12,000 Nm .

\text { Work done per cycle }=T_{\text {mean }} \times 4 \pi Nm .

T_{\text {mean }}=\frac{12,000}{4 \pi}=954.93 Nm .

\text { Work done during expansion stroke }=A_{3} \times \text { Scale }=6.8 \times 10^{-3} \times 3 \times 10^{6}=20.400 Nm .

= Area ΔABC.

=\left(\frac{1}{2}\right) \times A C \times B F=\left(\frac{1}{2}\right) \times \pi \times B F .

B F=\frac{20400 \times 2}{\pi}=12987 N m .

\text { Excess torque, } B G=B F-F G=12987-954.93=12033.07 Nm .

Now Δs ABC and DBE are similar. Thus

\frac{D E}{A C}=\frac{B G}{B F} .

D E=\left(\frac{12033.07}{12987}\right) \pi=3.91 \text { radian } .

\text { Maximum fluctuation of energy, } E_{f}=\text { Area } \Delta B D E=\left(\frac{1}{2}\right) D E \times B G .

=\left(\frac{1}{2}\right) \times 3.91 \times 12033.07=17506.7 Nm .

Mass of flywheel,    m=\frac{E_{f}}{R^{2} \omega^{2} C_{s}} .

=\frac{17506.7}{(1.2)^{2} \times(20.944)^{2} \times 0.02}=1385.8 kg .

10.36

Related Answered Questions