Question 12.2: The value of at any latitude Φ may be obtained from the form...

The value of  at any latitude \phi may be obtained from the formula

g=32.09\left(1+0.0053 \sin ^{2} \phi\right) \mathrm{\ ft} / \mathrm{s}^{2}

which takes into account the effect of the rotation of the earth, as well as the fact that the earth is not truly spherical. Determine to four significant figures (a) the weight in pounds, (b) the mass in pounds, (c) the mass in lb ⋅ s² /ft, at the latitudes of 0°, 45°, and 60°, of a silver bar, the mass of which has been officially designated as 5 lb.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\begin{array}{ll} & g=32.09\left(1+0.0053 \sin ^{2} \phi\right) \mathrm{\ ft} / \mathrm{s}^{2} \\\phi=0^{\circ}: & g=32.09 \mathrm{\ ft} / \mathrm{s}^{2} \\\phi=45^{\circ}: & g=32.175 \mathrm{\ ft} / \mathrm{s}^{2} \\\phi=90^{\circ}: & g=32.26 \mathrm{\ ft} / \mathrm{s}^{2}\end{array}

(a) Weight: \quad W=m g

\phi=0^{\circ}: \quad W=\left(0.1554 \mathrm{\ lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(32.09 \mathrm{\ ft} / \mathrm{s}^{2}\right)=4.987 \mathrm{\ lb}\blacktriangleleft

\phi=45^{\circ}: \quad W=\left(0.1554 \mathrm{\ lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(32.175 \mathrm{\ ft} / \mathrm{s}^{2}\right)=5.000 \mathrm{\ lb}\blacktriangleleft

\phi=90^{\circ}: \quad W=\left(0.1554 \mathrm{\ lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(32.26 \mathrm{\ ft} / \mathrm{s}^{2}\right)=5.013 \mathrm{\ lb}\blacktriangleleft

(b) Mass: At all latitudes: \quad\quad m=5.000\mathrm{\ lb}\blacktriangleleft

(c) or  \quad m=\frac{5.00 \mathrm{\ lb}}{32.175 \mathrm{\ ft} / \mathrm{s}^{2}}\quad\quad m=0.1554 \mathrm{\ lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\blacktriangleleft

Related Answered Questions