Question 5.11: The work cycle of a mechanical component subjected to comple...

The work cycle of a mechanical component subjected to completely reversed bending stresses consists of the following three elements:
(i) ± 350 N/mm² for 85% of time
(ii) ± 400 N/mm² for 12% of time
(iii) ± 500 N/mm² for 3% of time
The material for the component is 50C4 \left(S_{u t}=\right.\left.660 N / mm ^{2}\right)  and the corrected endurance limit of the component is 280 N/mm². Determine the life of the component.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } S_{u t}=660 N / mm ^{2} \quad S_{e}=280 N / mm ^{2} .

Step I Construction of S–N diagram

0.9 \text { Sut }=0.9(660)=594 N / mm ^{2} .

\log 10\left(0.9 S_{u t}\right)=\log _{10}(594)=2.7738 .

\log _{10}\left(S_{e}\right)=\log _{10}(280)=2.4472 .

\log _{10}\left(\sigma_{1}\right)=\log _{10}(350)=2.5441 .

\log _{10}\left(\sigma_{2}\right)=\log _{10}(400)=2.6021 .

\log _{10}\left(\sigma_{3}\right)=\log _{10}(500)=2.6990 .

The S–N curve for this problem is shown in Fig. 5.38.

\text { Step II Calculation of } N_{1}, N_{2} \text { and } N_{3} .

From Fig. 5.38,

\overline{E F}=\frac{\overline{D B} \times \overline{A E}}{\overline{A D}}=\frac{(6-3)\left(2.7738-\log _{10} \sigma\right)}{(2.7738-2.4472)}         (a).

and          \log _{10} N=3+\overline{E F}             (b).

From (a) and (b),

\log _{10} N=3+9.1855\left(2.7738-\log _{10} \sigma\right) .

Therefore

\log _{10}\left(N_{1}\right)=3+9.1855(2.7738-2.5441) .

or      N_{1}=128798 .

\log _{10}\left(N_{2}\right)=3+9.1855(2.7738-2.6021) .

or      N_{2}=37770 .

\log _{10}\left(N_{3}\right)=3+9.1855(2.7738-2.6990) .

or        N_{3}=4865 .

Step III Fatigue life of component
From Eq. 5.34,

\frac{\alpha_{1}}{N_{1}}+\frac{\alpha_{2}}{N_{2}}+\ldots+\frac{\alpha_{x}}{N_{x}}=\frac{1}{N}           (5.34).

\frac{\alpha_{1}}{N_{1}}+\frac{\alpha_{2}}{N_{2}}+\frac{\alpha_{3}}{N_{3}}=\frac{1}{N} .

\frac{0.85}{128798}+\frac{0.12}{37770}+\frac{0.03}{4865}=\frac{1}{N} .

or              N = 62 723 cycles.

5.38

Related Answered Questions