\text { Given } S_{u t}=660 N / mm ^{2} \quad S_{e}=280 N / mm ^{2} .
Step I Construction of S–N diagram
0.9 \text { Sut }=0.9(660)=594 N / mm ^{2} .
\log 10\left(0.9 S_{u t}\right)=\log _{10}(594)=2.7738 .
\log _{10}\left(S_{e}\right)=\log _{10}(280)=2.4472 .
\log _{10}\left(\sigma_{1}\right)=\log _{10}(350)=2.5441 .
\log _{10}\left(\sigma_{2}\right)=\log _{10}(400)=2.6021 .
\log _{10}\left(\sigma_{3}\right)=\log _{10}(500)=2.6990 .
The S–N curve for this problem is shown in Fig. 5.38.
\text { Step II Calculation of } N_{1}, N_{2} \text { and } N_{3} .
From Fig. 5.38,
\overline{E F}=\frac{\overline{D B} \times \overline{A E}}{\overline{A D}}=\frac{(6-3)\left(2.7738-\log _{10} \sigma\right)}{(2.7738-2.4472)} (a).
and \log _{10} N=3+\overline{E F} (b).
From (a) and (b),
\log _{10} N=3+9.1855\left(2.7738-\log _{10} \sigma\right) .
Therefore
\log _{10}\left(N_{1}\right)=3+9.1855(2.7738-2.5441) .
or N_{1}=128798 .
\log _{10}\left(N_{2}\right)=3+9.1855(2.7738-2.6021) .
or N_{2}=37770 .
\log _{10}\left(N_{3}\right)=3+9.1855(2.7738-2.6990) .
or N_{3}=4865 .
Step III Fatigue life of component
From Eq. 5.34,
\frac{\alpha_{1}}{N_{1}}+\frac{\alpha_{2}}{N_{2}}+\ldots+\frac{\alpha_{x}}{N_{x}}=\frac{1}{N} (5.34).
\frac{\alpha_{1}}{N_{1}}+\frac{\alpha_{2}}{N_{2}}+\frac{\alpha_{3}}{N_{3}}=\frac{1}{N} .
\frac{0.85}{128798}+\frac{0.12}{37770}+\frac{0.03}{4865}=\frac{1}{N} .
or N = 62 723 cycles.