Shafts subjected to thrust can be constrained by bearings, one of which supports the thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may not contribute measurably to the chance of failure. If this is the case, we may be able to obtain the desired combined reliability with bearing A having a reliability near 0.99 and bearing B having a reliability near 1. This would allow for bearing A to have a lower capacity than if it needed to achieve a reliability of \sqrt{0.99}. To determine if this is the case, we will start with bearing B.
Bearing B (straight roller bearing)
\begin{aligned}&x_{D}=\frac{30000(500)(60)}{10^{6}}=900 \\&F_{r}=\left(36^{2}+67^{2}\right)^{1 / 2}=76.1 lbf =0.339 kN\end{aligned}
Try a reliability of 1 to see if it is readily obtainable with the available bearings.
Eq. (11-6): C_{10}=1.2(0.339)\left\{\frac{900}{0.02+4.439[\ln (1 / 1.0)]^{1 / 1.483}}\right\}^{3 / 10}=10.1 kN
The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN. Therefore, we select the 02-25 mm straight cylindrical roller bearing.
Bearing at A (angular-contact ball)
With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99 if bearing A has a reliability of 0.99.
\begin{aligned}&F_{r}=\left(36^{2}+212^{2}\right)^{1 / 2}=215 lbf =0.957 kN \\&F_{a}=555 lbf =2.47 kN\end{aligned}
Trial #1:
Tentatively select an 02-85 mm angular-contact with C_{10}=90.4 kN \text { and } C_{0}=63.0 kN.
\begin{aligned}&\frac{F_{a}}{C_{0}}=\frac{2.47}{63.0}=0.0392 \\&x_{D}=\frac{30000(500)(60)}{10^{6}}=900\end{aligned}
Table 11-1: Interpolating, X_{2}=0.56, Y_{2}=1.88
Eq. (11-9): F_{e}=0.56(0.957)+1.88(2.47)=5.18 kN
Eq. (11-6):
\begin{aligned}C_{10} &=1.2(5.18)\left\{\frac{900}{0.02+4.439[\ln (1 / 0.99)]^{1 / .483}}\right\}^{1 / 3} \\&=99.54 kN >90.4 kN\end{aligned}
Trial #2:
Tentatively select a 02-90 mm angular-contact ball with C_{10}=106 kN \text { and } C_{0}=73.5 kN.
\frac{F_{a}}{C_{0}}=\frac{2.47}{73.5}=0.0336
Table 11-1: Interpolating, X_{2}=0.56, \quad Y_{2}=1.93
F_{e}=0.56(0.957)+1.93(2.47)=5.30 kN
C_{10}=1.2(5.30)\left\{\frac{900}{0.02+4.439[\ln (1 / 0.99)]^{1 / 1.483}}\right\}^{1 / 3}=102 kN <106 kN \quad \text { O.K. }
Select an 02-90 mm angular-contact ball bearing
_____________________________________________________________________________________________________________________________
Eq. (11-6): C_{10}=a_{f} F_{D}\left[\frac{x_{D}}{x_{0}+\left(\theta-x_{0}\right)\left(\ln 1 / R_{D}\right)^{1 / b}}\right]^{1 / a}
Eq. (11-9): F_{e}=X_{i} V F_{r}+Y_{i} F_{a}
Table 11–3
Dimensions and Basic Load Ratings for Cylindrical Roller Bearings |
Bore, mm |
02-Series |
03-Series |
OD, mm |
Width, mm |
Load Rating, kN |
OD, mm |
Width, mm |
Load Rating, kN |
C_{10} |
C_{0} |
C_{10} |
C_{0} |
25 |
52 |
15 |
16.8 |
8.8 |
62 |
17 |
28.6 |
15.0 |
30 |
62 |
16 |
22.4 |
12.0 |
72 |
19 |
36.9 |
20.0 |
35 |
72 |
17 |
31.9 |
17.6 |
80 |
21 |
44.6 |
27.1 |
40 |
80 |
18 |
41.8 |
24 |
90 |
23 |
56.1 |
32.5 |
45 |
85 |
19 |
44.0 |
25.5 |
100 |
25 |
72.1 |
45.4 |
50 |
90 |
20 |
45.7 |
27.5 |
110 |
27 |
88.0 |
52.0 |
55 |
100 |
21 |
56.1 |
34.0 |
120 |
29 |
102 |
67.2 |
60 |
110 |
22 |
64.4 |
43.1 |
130 |
31 |
123 |
76.5 |
65 |
120 |
23 |
76.5 |
51.2 |
140 |
33 |
138 |
85.0 |
70 |
125 |
24 |
79.2 |
51.2 |
150 |
35 |
151 |
102 |
75 |
130 |
25 |
93.1 |
63.2 |
160 |
37 |
183 |
125 |
80 |
140 |
26 |
106 |
69.4 |
170 |
39 |
190 |
125 |
85 |
150 |
28 |
119 |
78.3 |
180 |
41 |
212 |
149 |
90 |
160 |
30 |
142 |
100 |
190 |
43 |
242 |
160 |
95 |
170 |
32 |
165 |
112 |
200 |
45 |
264 |
189 |
100 |
180 |
34 |
183 |
125 |
215 |
48 |
303 |
220 |
110 |
200 |
38 |
229 |
167 |
240 |
50 |
391 |
304 |
120 |
215 |
40 |
260 |
183 |
260 |
55 |
457 |
340 |
130 |
230 |
40 |
270 |
193 |
280 |
58 |
539 |
408 |
140 |
250 |
42 |
319 |
240 |
300 |
62 |
682 |
454 |
150 |
270 |
45 |
446 |
260 |
320 |
65 |
781 |
502 |
Table 11–1
Equivalent Radial Load
Factors for Ball Bearings |
F_{a} / C_{0} |
e |
F_{a} /\left( VF _{r}\right) \leq e |
F_{a} /\left( VF _{r}\right)>e |
X_{1} |
Y _{ 1 } |
X_{2} |
Y _{ 2 } |
0.014* |
0.13 |
1.00 |
0 |
0.56 |
2.30 |
0.021 |
0.21 |
1.00 |
0 |
0.56 |
2.15 |
0.028 |
0.22 |
1.00 |
0 |
0.56 |
1.99 |
0.042 |
0.24 |
1.00 |
0 |
0.56 |
1.85 |
0.056 |
0.26 |
1.00 |
0 |
0.56 |
1.71 |
0.070 |
0.27 |
1.00 |
0 |
0.56 |
1.63 |
0.084 |
0.28 |
1.00 |
0 |
0.56 |
1.55 |
0.110 |
0.30 |
1.00 |
0 |
0.56 |
1.45 |
0.17 |
0.34 |
1.00 |
0 |
0.56 |
1.31 |
0.28 |
0.38 |
1.00 |
0 |
0.56 |
1.15 |
0.42 |
0.42 |
1.00 |
0 |
0.56 |
1.04 |
0.56 |
0.44 |
1.00 |
0 |
0.56 |
1.00 |
*Use 0.014 if F_{a} / C_{0}<0.014. |