a) Figure 11.14 shows the single-phase equivalent circuit. The load impedance of the Y equivalent is
\frac{118.5 + j85.8}{3}= 39.5 + j 28.6 Ω/Φ..
b) The a-phase line current is
\pmb{I}_{aA}=\frac{120 \angle 0^{\circ}}{(0.2 + 0.3 + 39.5) + j(0.5 + 0.9 + 28.6)}
=\frac{120 \angle 0^{\circ}}{40+j30}
= 2.4 \angle -36.87^{\circ} A.
Hence
\pmb{I}_{bB}= 2.4\angle -156.87^{\circ} A,
\pmb{I}_{cC}= 2.4\angle 83.13^{\circ} A.
c) Because the load is connected, the phase voltages are the same as the line voltages. To calculate the line voltages, we first calculate \pmb{V}_{AN}:
\pmb{V}_{AN}= \left(39.5 + j28.6\right)\left(2.4 \angle -36.87^{\circ}\right)
= 117.04 \angle-0.96^{\circ}V .
Because the phase sequence is positive, the line voltage is \pmb{V}_{AB}:
\pmb{V}_{AB}= \left(\sqrt{3} \angle 30^{\circ}\right)\pmb{V}_{AN}
= 202.72 \angle29.04^{\circ} V ,
Therefore
\pmb{V}_{BC}= 202.72\angle -90.96^{\circ} V,
\pmb{V}_{CA}= 202.72\angle 149.04^{\circ} V.
d) The phase currents of the load may be calculated directly from the line currents
\pmb{I}_{AB}= \left(\frac{1}{\sqrt{3}} \angle 30^{\circ}\right)\pmb{I}_{aA}
= 1.39\angle -6.87^{\circ} A ,
Once we know \pmb{I}_{AB}, we also know the other load phase currents:
\pmb{I}_{BC}= 1.39 \angle -126.87^{\circ} A,
\pmb{I}_{CA}= 1.39 \angle 113.13^{\circ} A.
Note that we can check the calculation of \pmb{I}_{AB} by using the previously calculated \pmb{V}_{AB} and the impedance of the Δ-connected load; that is,
\pmb{I}_{AB}= \frac{\pmb{V}_{AB}}{Z_{\phi}}=\frac{ 202.72\angle 29.04^{\circ} }{118.5+j85.8}
= 1.39\angle -6.87^{\circ} A .
e) To calculate the line voltage at the terminals of the source, we first calculate \pmb{V}_{an} Figure 11.14 shows that \pmb{V}_{an} is the voltage drop across the line impedance plus the load impedance, so
\pmb{V}_{an}=\left(39.8 + j29.5\right)\left(2.4 \angle -36.87^{\circ}\right)
= 118.90 \angle-0.32^{\circ}V .
The line voltage \pmb{V}_{ab}is
\pmb{V}_{ab}= \left(\sqrt{3} \angle 30^{\circ}\right)\pmb{V}_{an},
or
\pmb{V}_{ab}= 205.94 \angle 29.68^{\circ}V.
Therefore
\pmb{V}_{bc}= 205.94 \angle -90.32^{\circ}V.
\pmb{V}_{ca}= 205.94 \angle 149.68^{\circ}V.