Question 11.9: This example illustrates the complexity and trial and error ...

This example illustrates the complexity and trial and error nature of stage-by-stage calculation.

The same problem specification has been used in earlier examples to illustrate the shortcut design methods.

A butane-pentane splitter is to operate at 8.3 bar with the following feed composition:

x_{f} f mol/100 mol feed
Propane, C _{3} 0.05 5
Isobutane, iC _{4} 0.15 15
Normal butane, nC _{4} 0.25 25
Isopentane, iC _{5} 0.20 20
Normal pentane, nC _{5} 0.35 35
Light key nC _{4}
Heavy key iC _{5}

For a specification of not more than 1 mol of the light key in the bottom product and not more than 1 mol of the heavy key in the top product, and a reflux ratio of 2.5, make a stage-by-stage calculation to determine the product composition and number of stages required.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Only sufficient trial calculations will be made to illustrate the method used. Basis 100 mol feed.

Estimation of dew and bubble points

 

\text { Bubble point } \sum y_{i}=\sum K_{i} x_{i}=1.0 (11.5a)

 

\text { Dew point } \sum x_{i}=\sum \frac{y_{i}}{K_{i}}=1.0 (11.5b)

 

The K values, taken from the De Priester charts (Chapter 8), are plotted in Figure (a) for easy interpolation.

To estimate the dew and bubble points, assume that nothing heavier than the heavy key appears in the tops, and nothing lighter than the light key in the bottoms.

 

d x_{d} b x_{b}
C _{3} 5 0.11 0 _
C _{4} 15 0.33 0 _
nC _{4} 24 0.54 1 0.02
iC _{5} 1 0.02 19 0.34
nC _{5} 0 _ 35 0.64
45 55

 

Bubble-point calculation, bottoms

 

x_{b} \text { Try } 100^{\circ} C \text { Try } 120^{\circ} C
K_{i} K_{i} x_{i} K_{i} K_{i} x_{i}
C _{3} _ _ _ _ _
iC _{4} _ _ _ _ _
nC _{4} 0.02 1085 0.04 2.1 0.04
iC _{5} 0.34 0.94 0.32 1.1 0.37
nC _{5} 0.64 0.82 0.52 0.96 0.61
\Sigma K_{i} x_{i}=0.88 temp. too low 1.02 close enough

 

Bubble-point calculation, feed (liquid feed)

 

x_{d} \text { Try } 70^{\circ} C \text { Try } 60^{\circ} C
K_{i} y_{i} / K_{i} K_{i} y_{i} / K_{i}
C _{3} 0.11 2.6 0.04 2.20 0.24
iC _{4} 0.33 1.3 0.25 1.06 0.35
nC _{4} 0.54 0.9 0.60 0.77 0.42
iC _{5} 0.02 0.46 0.04 0.36 0.01
nC _{5} _ _ _ _ _
\Sigma y_{i} / K_{i}=0.94 temp. too high 1.02 close enough

 

Bubble-point calculation, feed (liquid feed)

 

x_{f} \text { Try } 80^{\circ} C \text { Try } 90^{\circ} C \text { Try } 85^{\circ} C
K_{i} x_{i} K_{i} K_{i} x_{i} K_{i} K_{i} x_{i} K_{i}
C _{3} 0.05 2.9 0.15 3.4 0.17 3.15 0.16
iC _{4} 0.15 1.5 0.23 1.8 0.27 1.66 0.25
nC _{4} 0.25 1.1 0.28 1.3 0.33 1.21 0.30
iC _{5} 0.20 0.5 0.11 0.66 0.13 0.60 0.12
nC _{5} 0.35 0.47 0.16 0.56 0.20 0.48 0.17
0.93 temp. too low 1.10 temp. too high 1.00 satisfactory

 

Stage-by-stage calculations

Top down calculations, assume total condensation with no subcooling

 

y_{1}=x_{d}=x_{0}

 

It is necessary to estimate the composition of the “non-keys” so that they can be included in the stage calculations. As a first trial the following values will be assumed:

 

X _{d}
C _{3} 0.10 5
iC _{4} 0.33 15
nC _{4} 0.54 24
iC _{5} 0.02 1
nC _{5} 0.001 0.1
45.1

 

In each stage calculation it will necessary to estimate the stage temperatures to determine the K values and liquid and vapour enthalpies. The temperature range from top to bottom of the column will be approximately 120 – 60 = 5^{\circ} C. An approximate calculation (Example 11.7) has shown that around fourteen ideal stages will be needed; so the temperature change from stage to stage can be expected to be around 4 to 5^{\circ} C.

Stage 1

 

L_{0}=R \times D=2.5 \times 45.1=112.8

 

V_{1}=(R+1) D=3.5 \times 45.1=157.9

 

Estimation of stage temperature and outlet liquid composition (x1)

 

y_{1} \text { Try } T_{1}=66^{\circ} C \text { Try } T_{1}=65^{\circ} C
K_{i} y_{i} / K_{i} K_{i} y_{i} / K_{i} x_{1}=y_{i} / K_{i} Normalised
C _{3} 0.1 2.4 0.042 2.36 0.042 0.042
iC _{4} 0.33 1.2 0.275 1.19 0.277 0.278
nC _{4} 0.54 0.88 0.614 0.86 0.628 0.629
iC _{5} 0.02 0.42 0.048 0.42 0.048 0.048
nC _{5} 0.001 0.32 0.003 0.32 0.003 0.003
\Sigma y_{i} / K_{i}=0.982 too low 0.998 close enough

 

Summary of stage equations

 

L_{0}+V_{2}=L_{1}+V_{1} (i)

 

L_{0} x_{0}+V_{2} y_{2}=L_{1} x_{1}+V_{1} y_{1} (ii)

 

h_{0} L_{0}+H_{2} V_{2}=h_{1} L_{1}+H_{1} V_{1} (iii)

 

h=f(x, T) (iv)

 

H=f(x, T) (v)

 

The enthalpy relationship is plotted in Figures (b) and (c).

 

y_{i}=K_{i} x_{i} (vi)

 

Before a heat balance can be made to estimate L_{1} \text { and } V_{2}, an estimate of y_{2} \text { and } T_{2} is needed. y_{2} is dependent on the liquid and vapour flows, so as a first trial assume that

these are constant and equal to L_{0} \text { and } V_{1}; then, from equations (i) and (ii),

 

y_{2}=\left(\frac{L_{0}}{V_{1}}\right)\left(x_{1}-x_{0}\right)+y_{1}

 

\frac{L_{0}}{V_{1}}=\frac{112.8}{157.9}=0.71

 

x_{1} x_{0} y_{2}=0.71\left(x_{1}-x_{0}\right)+y_{1} y_{2} Normalised
C _{3} 0.042 0.10 0.057 0.057
iC _{4} 0.278 0.33 0.294 0.292
nC _{4} 0.629 0.54 0.604 0.600
iC _{5} 0.048 0.02 0.041 0.041
nC _{5} 0.003 0.001 0.013 0.013
1.009 close enough

 

Enthalpy data from Figures (b) and (c) J/mol

 

 h_{0}\left(T_{0}=60^{\circ} C \right) h_{1}\left(T_{1}=65^{\circ} C \right)
x_{0} h_{i} h_{j} x_{i} x_{1} h_{i} h_{j} x_{i}
C _{3} 0.10 20,400 2040 0.042 21,000 882
iC _{4} 0.33 23,400 7722 0.278 24,900 6897
nC _{4} 0.54 25,200 13,608 0.629 26,000 16,328
iC _{5} 0.02 27,500 550 0.048 28,400 1363
nC _{5} 0.001 30,000 30 0.003 30,700 92
h_{0}=23,950 h_{1}=25,562

 

 H_{1}\left(T_{1}=65^{\circ} C \right) h_{1}\left(T_{1}=65^{\circ} C \right)
v_{1} H_{i} H_{i} y_{i} y_{2} H_{i} H_{i} y_{i}
C _{3} 0.10 34,000 3400 0.057 34,800 1984
iC _{4} 0.33 41,000 13,530 0.292 41,300 12,142
nC _{4} 0.54 43,700 23,498 0.600 44,200 26,697
iC _{5} 0.02 52,000 1040 0.041 52,500 2153
nC _{5} 0.001 54,800 55 0.013 55,000 715
H_{1}=41,623 H_{2}=43,691

 

Energy balance (equation iii)

 

23,950 \times 112.8+43,691 V_{2}=25,562 L_{1}+41,623 \times 157.9

 

43,691 V_{2}=255,626 L_{1}+3,870,712

 

Material balance (equation i)

 

112.8+V_{2}=L_{1}+157.9

 

substituting

 

43,691\left(L_{1}+45.1\right)=25,562 L_{1}+3,870,712

 

L_{1}=104.8

 

V_{2}=104.8+45.1=149.9

 

\frac{L_{1}}{V_{2}}=0.70

 

Could revise calculated values for y_{2} \text { but } L_{1} / V_{2} is close enough to assumed value of 0.71, so there would be no significant difference from first estimate.

Stage 2

Estimation of stage temperature and outlet liquid composition (x2).

 

y_{2} T_{2}=70^{\circ} C \text { (use assumed value as first trial) }
K_{i} x_{2}=y_{2} / K_{i} x_{2} Normalised
C _{3} 0.057 2.55 0.022 0.022
iC _{4} 0.292 1.30 0.226 0.222
nC _{4} 0.600 0.94 0.643 0.630
iC _{5} 0.041 0.43 0.095 0.093
nC _{5} 0.013 0.38 0.034 0.033
 1.020 close enough to 1.0

 

y_{3}=\frac{L}{V}\left(x_{2}-x_{1}\right)+y_{2}

 

\text { As a first trial take } L / V \text { as } L_{1} / V_{1}=0.70

 

x_{2}  x_{1}  y_{3}=0.70\left(x_{2}-x_{1}\right)+y_{2}  y_{3} Normalised
C _{3}           0.02 0.042 0.044 0.043
iC _{4} 0.222 0.277 0.256 0.251
nC _{4} 0.630 0.628 0.0613 0.601
iC _{5} 0.093 0.048 0.072 0.072
nC _{5} 0.033 0.003 0.035 0.034
1.020

 

Enthalpy data from Figures (b) and (c)

 

h_{2}\left(T_{2}=70^{\circ} C \right) H_{3}\left(T_{3}=75^{\circ} C \text { assumed }\right)
x_{2} h_{i} h_{i} x_{2} y_{3} H_{i} H_{i} y_{3}
C _{3} 0.022 21,900 482 0.043 34,600 1488
iC _{4} 0.222 25,300 5617 0.251 41,800 10,492
nC _{4} 0.630 27,000 17,010 0.601 44,700 26,865
iC _{5} 0.093 29,500 2744 0.072 53,000 3816
nC _{5} 0.033 31,600 1043 0.035 55,400 1939
h_{2}=26,896 H_{3}=44,600

 

Energy balance

 

25,562 \times 104.8+44,600 V_{3}=4369 \times 149.9+26,896 L_{2}

 

Material balance

 

104.8+V_{3}=149.9+L_{2}

 

L_{2}=105.0

 

V_{3}=150.1

 

\frac{L_{2}}{V_{3}}=0.70 \text { checks with assumed value. }

 

Stage 3

As the calculated liquid and vapour flows are not changing much from stage to stage the calculation will be continued with the value of L/V taken as constant at 0.7.

 

\text { Try } T_{3}=75^{\circ} C \text { (assumed value) }  y_{4}=0.7\left(x_{3}-x_{2}\right)+y_{3}
 K_{i} x_{3}=y_{3} / K_{i} Normalised
C _{3} 2.71 0.016 0.015 0.38
iC _{4} 1.40 0.183 0.177 0.217
nC _{4} 1.02 0.601 0.580 0.570
iC _{5} 0.50 0.144 0.139 0.104
nC _{5} 0.38 0.092 0.089 0.074
1.036 Close enough 1.003

 

 

\text { Try } T_{4}=81^{\circ} C  y_{5}=0.7\left(x_{4}-x_{3}\right)+y_{4}
 K_{i} x_{4}=y_{4} / K_{i} Normalised
C _{3} 2.95 0.013 0.013 0.39
iC _{4} 1.55 0.140 0.139 0.199
nC _{4} 1.13 0.504 0.501 0.515
iC _{5} 0.55 0.189 0.188 0.137
nC _{5} 0.46 0.161 0.166 0.118
1.007 Close enough 1.008

 

Stage 5

 

\text { Try } T_{5}=85^{\circ} C  y_{6}=0.7\left(x_{5}-x_{4}\right)+y_{5}
 K_{i} x_{5} Normalised
C _{3} 3.12 0.013 0.012 0.038
iC _{4} 1.66 0.120 0.115 0.179
nC _{4} 1.20 0.430 0.410 0.450
iC _{5} 0.60 0.228 0.218 0.159
nC _{5} 46 0.257 0.245 0.192
1.048 Close enough 1.018

 

Stage 6

 

\text { Try } T_{6}=90^{\circ} C K_{i} \text { Try } T_{6}=92^{\circ} C x_{7}
K_{i} x_{6} x_{6} Normalised
C _{3} 3.35 0.011 3.45 0.011 0.011 0.037
iC _{4} 1.80 0.099 1.85 0.097 0.095 0.166
nC _{4} 1.32 0.341 1.38 0.376 0.318 0.386
iC _{5} 0.65 0.245 0.69 0.230 0.224 0.163
nC _{5} 0.51 0.376 0.53 0.362 0.350 0.268
1.072 too low 1.026 close enough 1.02

 

\text { Note: ratio of } LK \text { to } HK \text { in liquid from this stage }=\frac{0.386}{0.163}=2.37

 

Stage 7

 

\text { Try } T_{6}=97^{\circ} C
K_{i} x_{7} Normalised
C _{3} 3.65 0.010 0.010
iC _{4} 1.98 0.084 0.083
nC _{4} 1.52 0.254 0.251
iC _{5} 0.75 0.217 0.214
nC _{5} 0.60 0.447 0.442
1.012

 

\text { ratio } \frac{ LK }{ HK }=\frac{0.251}{0.214}=1.17

 

This is just below the ratio in the feed

 

=\frac{25}{20}=1.25

 

So, the feed would be introduced at this stage.

But the composition of the non-key components on the plate does not match the feed composition.

 

x_{f} x_{7}
C _{3} 0.05 0.10
iC _{4} 0.15 0.084
nC _{4} 0.25 0.254
iC _{5} 0.20 0.217
nC _{5} 0.35 0.447

 

So it would be necessary to adjust the assumed top composition and repeat the calculation.

Bottom-up calculation

To illustrate the procedure the calculation will be shown for the reboiler and bottom stage, assuming constant molar overflow.

With the feed at its boiling point and constant molar overflow the base flows can be calculated as follows:

 

V^{\prime}=V_{0}=157.9

 

L^{\prime}=L_{0}+ FEED =112.8+100=212.8

 

\frac{V^{\prime}}{L^{\prime}}=\frac{157.9}{212.8}=0.74

 

It will be necessary to estimate the concentration of the non-key components in the bottom product; as a first trial take:

 

C _{3} iC _{4} nC _{4} iC _{5} nC _{5}
0.001 0.001 0.02 0.34 0.64

 

Reboiler

Check bubble-point estimate of 120^{\circ} C

 

x_{B} \text { Try } 120^{\circ} C \text { Try } 118^{\circ} C
K_{i} y_{B}=K_{i} x_{B} K_{i} y_{B}
C _{3} 0.001 4.73 0.005 4.60 0.005
iC _{4} 0.001 2.65 0.003 2.58 0.003
nC _{4} 0.02 2.10 0.042 2.03 0.041
iC _{5} 0.34 1.10 0.374 1.06 0.360
nC _{5} 0.64 0.96 0.614 0.92 0.589
1.038 too high 0.998 close enough

 

Material balance:

 

x_{B 1} L^{\prime}=y_{B} V^{\prime}+x_{B} B

 

x_{B 1}=\frac{V^{\prime}}{L^{\prime}} y_{B}+\frac{B}{L^{\prime}} x_{B}

 

x_{B 1}=\frac{157.9}{212.8} y_{B}+\frac{55}{212.8} x_{B} =0.74 y_{B}+0.26 x_{B}

 

Stage 1 from base (B1)

 

x_{B} y_{B} x_{B 1} x_{B 2}=0.74\left(y_{1 B}-y_{B}\right)+x_{1 B}
C _{3} 0.001 0.005 0.004 0.014
iC _{4} 0.001 0.003 0.002 0.036
nC _{4} 0.02 0.041 0.020 0.019
iC _{5} 0.34 0.361 0.356 0.357
nC _{5} 0.64 0.590 0.603 0.559
0.985

 

The calculation is continued stage-by-stage up the column to the feed point (stage 7 from the top). If the vapour composition at the feed point does not mesh with the top-down calculation, the assumed concentration of the non-keys in the bottom product is adjusted and the calculations repeated.

11.9
11.9.
11.9..
11.9...
11.9....
11.9.....

Related Answered Questions