Question 1.11: [This problem generalizes Example 1.2.] Imagine a particle o...

[This problem generalizes Example 1.2.] Imagine a particle of mass m and energy E in a potential well V(X), sliding frictionlessly back and forth between the classical turning points (a and b in Figure 1.10). Classically, the probability of finding the particle in the range dx (if, for example, you took a snapshot at a random time t) is equal to the fraction of the time T it takes to get from a to b that it spends in the interval dx:

ρ(x) d x=\frac{d t}{T}=\frac{(d t / d x) d x}{T}=\frac{1}{v(x) T} d x     (1.41)

where v(x) is the speed, and

T=\int_{0}^{T} d t=\int_{a}^{b} \frac{1}{v(x)} d x .        (1.42).

Thus

ρ(x) = \frac{1}{v(x)T}       (1.43).

This is perhaps the closest classical analog to \left|\Psi \right|^2 .

(a) Use conservation of energy to express v(x) in terms of E and V(x) .

(b) As an example, find ρ(x) for the simple harmonic oscillator, V(x) = kx^2/2 . Plot ρ(x), and check that it is correctly normalized.

(c) For the classical harmonic oscillator in part (b), find \left\langle x\right\rangle ,\left\langle x^2\right\rangle and σ_x .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\frac{1}{2} = m v^2 + V = E   → v(x) = \sqrt{\frac{2}{m} (E-V(x))} .

(b)

T=\int_{a}^{b} \frac{1}{\sqrt{\frac{2}{m}\left(E-\frac{1}{2} k x^{2}\right)}} d x=\sqrt{\frac{m}{k}} \int_{a}^{b} \frac{1}{\sqrt{(2 E / k)-x^{2}}} d x .

Turning points: v = 0 ⇒ E = V = \frac{1}{2}k b^2 b = \sqrt{2E/k};  a = -b.

T=2 \sqrt{\frac{m}{k}} \int_{0}^{b} \frac{1}{\sqrt{b^{2}-x^{2}}} d x=\left.2 \sqrt{\frac{m}{k}} \sin ^{-1}\left(\frac{x}{b}\right)\right|_{0} ^{b}=2 \sqrt{\frac{m}{k}} \sin ^{-1}(1) .

= 2  \sqrt{\frac{m}{k} } \Bigl(\frac{\pi }{2}\Bigr) = \pi \sqrt{\frac{m}{k} } .

\rho(x)=\frac{1}{\pi \sqrt{\frac{m}{k}} \sqrt{\frac{2}{m}\left(E-\frac{1}{2} k x^{2} 1\right)}}= \frac{1}{\pi \sqrt{b^2 -x^2} } .

\int_{a}^{b} \rho(x) d x=\frac{2}{\pi} \int_{0}^{b} \frac{1}{\sqrt{b^{2}-x^{2}}} d x=\frac{2}{\pi}\left(\frac{\pi}{2}\right)=1  .

(c) \left\langle x\right\rangle = 0  .

\left\langle x^{2}\right\rangle=\frac{1}{\pi} \int_{-b}^{b} \frac{x^{2}}{\sqrt{b^{2}-x^{2}}} d x=\frac{2}{\pi} \int_{0}^{b} \frac{x^{2}}{\sqrt{b^{2}-x^{2}}} d x .

=\left.\frac{2}{\pi}\left[-\frac{x}{2} \sqrt{b^{2}-x^{2}}+\frac{b^{2}}{2} \sin ^{-1}\left(\frac{x}{b}\right)\right]\right|_{0} ^{b}=\frac{b^{2}}{\pi} \sin ^{-1}(1)=\frac{b^{2}}{\pi} \frac{\pi}{2}=\frac{b^{2}}{2}= \frac{E}{k} .

\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\left\langle x^{2}\right\rangle}=\frac{b}{\sqrt{2}}= \sqrt{\frac{E}{k}}.

Related Answered Questions