Question 2.14: This problem is an expansion of Example 2-3. The table below...

This problem is an expansion of Example 2-3. The table below lists 10 sets of conditions—5 temperatures at a constant P, and five pressures at a constant T. For each T and P, find:

  •  The specific volume of steam, from the steam tables
  •  The specific volume of steam, from the ideal gas law

Comment on the results. Under what circumstances does departure from ideal gas behavior increase?

\begin{array}{|c|c|} \hline\text{Temperature}&\text{Pressure}\\\hline200^{\circ}C & 5\rm\, bar\\\hline 300^{\circ}C & 5\rm\, bar\\\hline 400^{\circ}C & 5\rm\, bar\\\hline 500^{\circ}C & 5\rm\, bar\\\hline 1000^{\circ}C & 5\rm\, bar\\\hline 250^{\circ}C & 0.1\rm\, bar\\\hline 250^{\circ}C & 1\rm\, bar\\\hline 250^{\circ}C & 5\rm\, bar\\\hline 250^{\circ}C & 10\rm\, bar\\\hline 250^{\circ}C & 25\rm\, bar\\\hline \end{array}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here we will display the calculations and reasoning behind the first set of conditions (bolded values):

    Specific Volume (H_2O)  
Temperature Pressure Steam  Tables
(m³/kg)
Ideal Gas  Law (m³/kg) % Difference
200°C 5 bar 0.425 0.437 2.82
300°C 5 bar 0.523 0.529 1.15
400°C 5 bar 0.617 0.621 0.65
500°C 5 bar 0.711 0.713 0.28
1000°C 5 bar 1.175 1.175 0.00
250°C 0.1 bar 24.136 24.132 -0.02
250°C 1 bar 2.406 2.413 0.29
250°C 5 bar 9.474 0.483 1.90
250°C 10 bar 0.233 0.241 3.43
250°C 25 bar 0.087 0.097 11.49

(From Steam tables) Steam at 200°C and 5 bar 

(From Ideal Gas Law)

\begin{aligned}& \mathrm{PV}=\mathrm{nRT} \rightarrow \underline{\mathrm{V}}=\frac{\mathrm{RT}}{\mathrm{P}} \\& \underline{\mathrm{V}}=\frac{\left(0.08206 \frac{\mathrm{L\,atm}}{\mathrm{mol} \,\mathrm{K}}\right)(473.15 \mathrm{~K})}{5 \mathrm{bar}}\left(\frac{1.01325 \,\mathrm{bar}}{1 \mathrm{~atm}}\right)\left(\frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}\right)\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right) \\&=\mathbf{0 . 4 3 7 \frac { \mathbf { m } ^ { 3 } } { \mathbf{ kg } }}\end{aligned}

Departures from ideal gas behavior increase with increasing pressure and with decreasing temperature, since both of these lead to lower volume, and lower volume means more significant intermolecular interaction

Related Answered Questions