Question 1.5.3: Three electrostatic point charges are located in the xyplane...

Three electrostatic point charges are located in the xy-plane as given below: +Q at (-a/2, 0), + Q at (a/2, 0) and – 02Q at (0, > /3/2)

Calculate the coordinate of the point, P, on the y-axis, where the potential due to these charges is zero. Also, calculate the magnitude of the electric field strength at P. At the point, P what is the angle between the equipotential passing through P and the y-axis?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

point, charge location  +Q A\left(\frac{-9}{2}, 0\right),+Q B\left(\frac{9}{5}, 0\right) and  -2 Q C\left(0, \frac{\sqrt{3}}{2} a\right)

(i) Let, P(a, y) be the point on y-axis, where V=V_{1}+V_{2}+V_{3} due to these change is zero, V=V_{1}+V_{2}+V_{3}=0

 

\begin{aligned}&\frac{Q}{4 \pi E_{0}}\left[\frac{1}{A P}+\frac{1}{B P}-\frac{2}{C P}\right]=0 \\&\text { But } A B=B P, \text { so, } \\&\frac{1}{A P}+\frac{1}{A P}-\frac{2}{C P} \text { or } A P=C P \\&\sqrt{\frac{a^{2}}{4}+y^{2}}=y-\frac{\sqrt{3}}{2} a, \Rightarrow y=\frac{a}{2 \sqrt{3}} \\&P(a, y)=P\left(0, \frac{a}{2 \sqrt{3}}\right)\end{aligned}

(ii) \underline{V} at point P(0, y)

\begin{aligned}V &=\frac{Q}{4 \pi E_{0}}\left[\frac{1}{A P}+\frac{1}{B P}-\frac{2}{C P}\right] \\&=\frac{Q}{2 \pi E_{0}}\left[\frac{1}{A P}-\frac{1}{C P}\right]\end{aligned}

 

\begin{aligned}&V=\frac{Q}{2 \pi E_{0}}\left[\frac{1}{\sqrt{\frac{a^{2}}{4}+y^{2}}}-\frac{1}{\sqrt{y-\frac{\sqrt{3}}{2}} a}\right] \\&\vec{E}=-\nabla V=-\left[\frac{\partial}{\partial x} V \hat{a}_{x}+\frac{\partial}{\partial y} V \hat{a}_{y}+\frac{\partial}{\partial z} V \hat{a}_{z}\right] \\&\frac{\partial V}{\partial x}=0 \\&\frac{\partial V}{\partial z}=0\end{aligned}

Solving

\frac{\partial \nu }{\partial y}=\frac{Q}{2 \pi E_{0}}\left[\begin{array}{l}-\frac{1}{2}\left(\frac{a^{2}}{4}+y^{2}\right)^{-3 / 2} \\(2 y)+\left(y-\frac{\sqrt{3}}{2} a\right)^{-2}\end{array}\right]

 

\vec{E}=\frac{-Q}{2 \pi E_{0}}\left[\begin{array}{l}-y\left(\frac{a^{2}}{4}+y^{2}\right)^{-3 / 2} \\+\left(y-\frac{\sqrt{3}}{2} a\right)^{-2} \vec{a}_{y}\end{array}\right]

 

\text { At } P(a, y)=P\left(o, \frac{a}{2 \sqrt{3}}\right)

 

\vec{E}=\frac{-Q}{2 \pi E_{0}}\left[\begin{array}{l}\frac{-a}{2 \sqrt{3}}\left(\frac{a^{2}}{4}+\frac{a^{2}}{12}\right)^{-3 / 2} \\+\left(\frac{a}{2 \sqrt{3}}-\frac{\sqrt{3}}{2} a\right)^{-2}\end{array}\right] \vec{a}_{x}

 

E=E_{y}=\frac{3 Q}{4 \pi E_{0} a^{2}}

(iii) The direction of \vec{E} at P is the direction of the normal to the equipotential surface (V = 0) at that points in the direction of the decreasing values of V. The direction of \vec{E} is in the  -\nu e y direction, the angle between the equipotential surface and y-axis is zero.

 

1.3

Related Answered Questions