Question 1.5: Three field quantities are given by P = 2ax - az, Q = 2ax - ...

Three field quantities are given by

P=2a_{x}-a_{z}

Q=2a_{x}-a_{y}+2a_{z}

R=2a_{x}-3a_{y}+a_{z}

Determine

(a) (P + Q) × (P – Q)

(b) Q · R × P

(c) P · Q × R

(d) \sin \theta_{QR}

(e) P × (Q × R)

(f) A unit vector perpendicular to both Q and R

(g) The component of P along Q

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

(P + Q) × (P – Q) = P × (P – Q) + Q × (P – Q)
= P × P – P × Q + Q × P – Q × Q
= 0 + Q × P + Q × P – 0
= 2Q × P

=2\left | \begin{matrix} a_{x} & a_{y} & a_{z} \\ 2 & -1 & 2 \\ 2 & 0 & -1 \end{matrix} \right |

=2\left(1-0\right)a_{x}+2\left(4+2\right)a_{y}+2\left(0+2\right)a_{z}=2a_{x}+12a_{y}+4a_{z}

(b) The only way Q · R × P makes sense is

Q\cdot \left(R\times P\right)=\left(2,-1,2\right)\cdot \left | \begin{matrix} a_{x} & a_{y} & a_{z} \\ 2 & -3 & 1 \\ 2 & 0 & -1 \end{matrix} \right |

=\left(2,-1,2\right)\cdot \left(3,4,6\right) =6-4+12=14

Alternatively:

Q\cdot \left(R\times P\right)=\left | \begin{matrix} 2 & -1 & 2 \\ 2 & -3 & 1 \\ 2 & 0 & -1 \end{matrix} \right |

To find the determinant of a 3 × 3 matrix, we repeat the first two rows and cross multiply; when the cross multiplication is from right to left, the result should be negated as shown diagrammatically here. This technique of finding a determinant applies only to a 3 × 3 matrix. Hence from figure,

Q\cdot \left(R\times P\right)=+6+0-2+12-0-2=14

as obtained before.

(c) From eq. (1.29)

· (B × C) = B · (C × A) = C · (A × B)

P · (Q × R) = Q · (R × P) = 14

or

P · (Q × R) = (2, 0, -1) · (5, 2, -4)
= 10 + 0 + 4 = 14

(d)

\sin \theta_{QR}=\frac{\left|Q\times R\right| }{\left|Q\right| \left|R\right| } =\frac{\left|\left(5,2,-4\right) \right| }{\left|\left(2,-1,2\right) \right|\left|\left(2,-3,1\right) \right| }

=\frac{\sqrt{45} }{3\sqrt{14} } =\frac{\sqrt{5} }{\sqrt{14} } =0.5976

(e)

P × (Q × R) = (2, 0, -1) × (5, 2, -4)
= (2, 3, 4)

Alternatively, using the bac-cab rule,

P × (Q × R) = Q(P · R) – R(P · Q)
= (2, -1, 2) (4 + 0 – 1) – (2, -3, 1) (4 + 0 – 2)
= (2, 3, 4)

(f ) A unit vector perpendicular to both Q and R is given by

a=\frac{\pm Q\times R}{\left|Q\times R\right| } =\frac{\pm \left(5,2,-4\right) }{\sqrt{45} } =\pm \left(0.745,0.298,-0.596\right)

Note that |a| = 1, a · Q = 0 = a · R, Any of these can be used to check a.

(g) The component of P along Q is

P_{Q}=\left|P\right| \cos \theta_{PQ}a_{Q}

=\left(P \cdot a_{Q}\right)a_{Q}=\frac{\left(P\cdot Q\right)Q }{\left|Q\right|^{2} }

=\frac{\left(4+0-2\right)\left(2,-1,2\right) }{\left(4+1+4\right) }=\frac{2}{9}\left(2,-1,2\right)

=0.4444a_{x}-0.2222a_{y}+0.4444a

التقاط

Related Answered Questions