Question 6.4: Three parallel strip footings 3 m wide each and 5 m apart ce...

Three parallel strip footings 3 m wide each and 5 m apart center to center transmit contact pressures of 200, 150 and 100 kN / m ^{2} respectively. Calculate the vertical stress due to the combined loads beneath the centers of each footing at a depth of 3 m below the base. Assume the footings are placed at a depth of 2 m at a depth of 2 m below the ground surface. Use Boussinesq’s method for line loads.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (6.4), we have

 

\sigma_{z}=\frac{q}{z} \frac{2 / \pi}{\left[1+(x / z)^{2}\right]^{2}}=\frac{q}{z} I_{z} (6.4)

 

\sigma_{z}=\frac{q}{z} \frac{2 / \pi}{\left[1+(x / z)^{2}\right]^{2}}=\frac{q}{z} I_{z}

 

The stress at A (Fig. Ex. 6.4) is

 

\left(\sigma_{z}\right)_{A}=\frac{2 \times 200}{3.14 \times 3}\left[\frac{1}{1+(0 / 3)^{2}}\right]^{2}+\frac{2 \times 150}{3.14 \times 3}\left[\frac{1}{1+(5 / 3)^{2}}\right]^{2}

 

+\frac{2 \times 100}{3.14 \times 3}\left[\frac{1}{1+(10 / 3)^{2}}\right]^{2}=45 kN / m ^{2}

 

The stress at B

 

\left(\sigma_{z}\right)_{B}=\frac{2 \times 200}{3 \pi}\left[\frac{1}{1+(5 / 3)^{2}}\right]^{2}+\frac{2 \times 150}{3 \pi}\left[\frac{1}{1+(0 / 3)^{2}}\right]^{2}

 

+\frac{2 \times 100}{3 \pi}\left[\frac{1}{1+(5 / 3)^{2}}\right]^{2}=36.3 kN / m ^{2}

 

The stress at C

 

\left(\sigma_{z}\right)_{C}=\frac{2 \times 200}{3 \pi} \frac{1}{1+(10 / 3)^{2}}^{2}+\frac{2 \times 150}{3 \pi} \frac{1}{1+(5 / 3)^{2}}^{2}+\frac{2 \times 100}{3 \pi}=23.74 kN / m ^{2}
6.4

Related Answered Questions