Equilibrium
Consider a FBD at joint B. Assume that both internal axial forces will be tension.
\Sigma F_{x}=-F_{1}+F_{2}=0 \quad \therefore F_{1}=F_{2} (a)
Similarly, consider a FBD at joint C. Assume that both internal axial forces will be tension.
\Sigma F_{x}=-F_{2}+F_{3}=0 \quad \therefore F_{3}=F_{2} (b)
Geometry of Deformations Relationship
\delta_{1}+\delta_{2}+\delta_{3}=0 (c)
Force-Temperature-Deformation Relationships
\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \quad \delta_{3}=\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3} (d)
Compatibility Equation
\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}+\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3}=0 (e)
Solve the Equations
From Eq. (a), F_{1}=F_{2}, and from Eq. (b), F_{3}=F_{2}. The temperature change is the same for all members;
therefore, \Delta T_{1}=\Delta T_{2}=\Delta T_{3}=\Delta T. Eq. (e) then can be written as:
\frac{\left(F_{2}\right) L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}+\frac{\left(F_{2}\right) L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T L_{3}=0
Solving for F_{2} :
\begin{gathered}\frac{F_{2} L_{1}}{A_{1} E_{1}}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\frac{F_{3} L_{3}}{A_{3} E_{3}}=-\alpha_{1} \Delta T L_{1}-\alpha_{2} \Delta T L_{2}-\alpha_{3} \Delta T L_{3} \\F_{2}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}\right]=-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right] \\F_{2}=-\frac{\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right]}{\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}} (f)\end{gathered}
Substitute the problem data along with ΔT = +180°F into Eq. (f) and calculate F_{1} = −19.1025 kips.
From Eq. (a), F_{1} = −19.1025 kips and from Eq. (b), F_{3} = −19.1025 kips.
(a) Normal Stresses
The normal stresses in each rod can now be calculated:
\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-19.1025 kips }{0.8 in. ^{2}}=-23.878 ksi =23.9 ksi ( C ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-19.1025 kips }{1.8 in .^{2}}=-10.613 ksi =10.61 ksi ( C ) \\&\sigma_{3}=\frac{F_{3}}{A_{3}}=\frac{-19.1025 kips }{0.6 in .^{2}}=-31.838 ksi =31.8 ksi ( C )\end{aligned}
(b) Force on Rigid Supports
The force exerted on the rigid supports is equal to the internal axial force:
R_{A}=R_{D}=19.10 kips
(c) Deflection of Joints B and C
The deflection of joint B is equal to the deformation (i.e., contraction in this instance) of rod (1). The deformation of rod (1) is given by:
\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(-19.1025 kips )(10 in .)}{\left(0.8 in .{ }^{2}\right)(10,000 ksi )}+\left(12.5 \times 10^{-6} /{ }^{\circ} F \right)\left(180^{\circ} F \right)(10 in .)=-0.001378 in .\end{aligned}
The deflection of joint B is thus:
u_{B}=\delta_{1}=0.001378 \text { in. } \leftarrow
The deformation of rod (2) is given by:
\begin{aligned}\delta_{2} &=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \\&=\frac{(-19.1025 kips )(5 in .)}{\left(1.8 in .^{2}\right)(22,500 ksi )}+\left(7.5 \times 10^{-6} /{ }^{\circ} F \right)\left(180^{\circ} F \right)(5 in .)=0.004392 in .\end{aligned}
The deflection of joint C is:
u_{C}=u_{B}+\delta_{2}=-0.001378 in .+0.004392 in .=0.00301 in . \rightarrow