Question 5.66: Three rods of different materials are connected and placed b...

Three rods of different materials are connected and placed between rigid supports at A and D, as shown in Figure P5.66/67. Properties for each of the three rods are given below. The bars are initially unstressed when the structure is assembled at 70°F. After the temperature has been increased to 250°F, determine:
(a) the normal stresses in the three rods.
(b) the force exerted on the rigid supports.
(c) the deflections of joints B and C relative to rigid support A.

\begin{array}{|l|l|l|l|}\hline \text { Aluminum (1) } & \text { Cast Iron (2) } & \text { Bronze (3) } \\L_{1}=10 \text { in. } & L_{2}=5 \text { in. } & L_{3}=7 \text { in. } \\A_{1}=0.8 \text { in. }^{2} & A_{2}=1.8 \text { in. }^{2} & A_{3}=0.6 \text { in. }^{2} \\E_{1}=10,000 ksi & E_{2}=22,500 ksi & E_{3}=15,000 ksi \\\alpha_{1}=12.5 \times 10^{-6} /{ }^{\circ} F & \alpha_{2}=7.5 \times 10^{-6} /{ }^{-6} F & \alpha_{3}=9.4\times 10^{-6} /{ }^{\circ} F \\\hline\end{array}
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD at joint B. Assume that both internal axial forces will be tension.

\Sigma F_{x}=-F_{1}+F_{2}=0 \quad \therefore F_{1}=F_{2}                                           (a)

Similarly, consider a FBD at joint C. Assume that both internal axial forces will be tension.

\Sigma F_{x}=-F_{2}+F_{3}=0 \quad \therefore F_{3}=F_{2}                                         (b)

Geometry of Deformations Relationship

\delta_{1}+\delta_{2}+\delta_{3}=0                                       (c)

Force-Temperature-Deformation Relationships

\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \quad \delta_{3}=\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3}                                       (d)

Compatibility Equation

\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}+\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3}=0                                   (e)

Solve the Equations

From Eq. (a), F_{1}=F_{2}, and from Eq. (b), F_{3}=F_{2}. The temperature change is the same for all members;
therefore, \Delta T_{1}=\Delta T_{2}=\Delta T_{3}=\Delta T. Eq. (e) then can be written as:

\frac{\left(F_{2}\right) L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}+\frac{\left(F_{2}\right) L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T L_{3}=0

Solving for F_{2} :

\begin{gathered}\frac{F_{2} L_{1}}{A_{1} E_{1}}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\frac{F_{3} L_{3}}{A_{3} E_{3}}=-\alpha_{1} \Delta T L_{1}-\alpha_{2} \Delta T L_{2}-\alpha_{3} \Delta T L_{3} \\F_{2}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}\right]=-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right] \\F_{2}=-\frac{\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right]}{\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}}             (f)\end{gathered}

Substitute the problem data along with ΔT = +180°F into Eq. (f) and calculate F_{1} = −19.1025 kips.
From Eq. (a), F_{1} = −19.1025 kips and from Eq. (b), F_{3} = −19.1025 kips.

(a) Normal Stresses
The normal stresses in each rod can now be calculated:

\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-19.1025  kips }{0.8  in. ^{2}}=-23.878  ksi =23.9  ksi ( C ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-19.1025  kips }{1.8  in .^{2}}=-10.613  ksi =10.61  ksi ( C ) \\&\sigma_{3}=\frac{F_{3}}{A_{3}}=\frac{-19.1025  kips }{0.6  in .^{2}}=-31.838  ksi =31.8  ksi ( C )\end{aligned}

(b) Force on Rigid Supports
The force exerted on the rigid supports is equal to the internal axial force:

R_{A}=R_{D}=19.10  kips

(c) Deflection of Joints B and C
The deflection of joint B is equal to the deformation (i.e., contraction in this instance) of rod (1). The deformation of rod (1) is given by:

\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(-19.1025  kips )(10  in .)}{\left(0.8  in .{ }^{2}\right)(10,000  ksi )}+\left(12.5 \times 10^{-6} /{ }^{\circ} F \right)\left(180^{\circ} F \right)(10  in .)=-0.001378  in .\end{aligned}

The deflection of joint B is thus:

u_{B}=\delta_{1}=0.001378 \text { in. } \leftarrow

The deformation of rod (2) is given by:

\begin{aligned}\delta_{2} &=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \\&=\frac{(-19.1025  kips )(5  in .)}{\left(1.8  in .^{2}\right)(22,500  ksi )}+\left(7.5 \times 10^{-6} /{ }^{\circ} F \right)\left(180^{\circ} F \right)(5  in .)=0.004392  in .\end{aligned}

The deflection of joint C is:

u_{C}=u_{B}+\delta_{2}=-0.001378  in .+0.004392  in .=0.00301  in . \rightarrow

 

 

5.66'
5.66''

Related Answered Questions